A proteomic approach for identification and localization of the pericellular components of chondrocytes

  • Zijun Zhang
  • Wu Jin
  • Jeffrey Beckett
  • Thomas Otto
  • Berton Moed
Original Paper


Although the pericellular matrix (PCM) plays a central role in the communication between chondrocytes and extracellular matrix, its composition is largely unknown. In this study, the PCM was investigated with a proteomic approach using chondrons, which are enzymatically isolated constructs including the chondrocyte and its surrounding PCM. Chondrons and chondrocytes alone were isolated from human articular cartilage. Proteins extracted from chondrons and chondrocytes were used for two-dimensional electrophoresis. Protein spots were quantitatively compared between chondron and chondrocyte gels. Cellular proteins, which had similar density between chondron and chondrocyte gels, did not proceed for analysis. Since chondrons only differ from chondrocytes in association of the PCM, protein spots in the chondron gels that had higher quantity than that in the chondrocyte gels were selected as candidates of the PCM components and processed for mass spectrometry. Among 15 identified peptides, several were fragments of the three type VI collagen chains (α-1, α-2, and α-3). Other identified PCM proteins included triosephosphate isomerase, transforming growth factor-β induced protein, peroxiredoxin-4, ADAM (A disintegrin and metalloproteinases) 28, and latent-transforming growth factor beta-binding protein-2. These PCM components were verified with immunohisto(cyto)chemistry for localization in the PCM region of articular cartilage. The abundance of type VI collagen in the PCM emphasizes its importance to the microenvironment of chondrocytes. Several proteins were localized in the PCM of chondrocytes for the first time and that warrants further investigation for their functions in cartilage biology.


Pericellular matrix Chondrocyte Chondron Cartilage Proteomics 


  1. Alexopoulos LG, Youn I, Bonaldo P, Guilak F (2009) Developmental and osteoarthritic changes in Col6a1-knockout mice: biomechanics of type VI collagen in the cartilage pericellular matrix. Arthr Rheum 60(3):771–779CrossRefGoogle Scholar
  2. Allen DM, Mao JJ (2004) Heterogeneous nanostructural and nanoelastic properties of pericellular and interterritorial matrices of chondrocytes by atomic force microscopy. J Struct Biol 145(3):196–204PubMedCrossRefGoogle Scholar
  3. Caramés B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M (2010) Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthr Rheum 62(3):791–801CrossRefGoogle Scholar
  4. Catterall JB, Rowan AD, Sarsfield S, Saklatvala J, Wait R, Cawston TE (2006) Development of a novel 2D proteomics approach for the identification of proteins secreted by primary chondrocytes after stimulation by IL-1 and oncostatin M. Rheumatology (Oxford) 45(9):1101–1109CrossRefGoogle Scholar
  5. Chen AF, Davies CM, De Lin M, Fermor B (2008) Oxidative DNA damage in osteoarthritic porcine articular cartilage. J Cell Physiol 217(3):828–833PubMedCrossRefGoogle Scholar
  6. Cheng JS, Dubal DB, Kim DH, Legleiter J, Cheng IH, Yu GQ, Tesseur I, Wyss-Coray T, Bonaldo P, Mucke L (2009) Collagen VI protects neurons against Abeta toxicity. Nat Neurosci 12:119–121PubMedCrossRefGoogle Scholar
  7. Cillero-Pastor B, Ruiz-Romero C, Caramés B, López-Armada MJ, Blanco FJ (2010) Proteomic analysis by two-dimensional electrophoresis to identify the normal human chondrocyte proteome stimulated by tumor necrosis factor alpha and interleukin-1beta. Arthr Rheum 62(3):802–814CrossRefGoogle Scholar
  8. De Ceuninck F (2007) The birth and infancy of proteomic analysis in osteoarthritis research. Curr Opin Mol Ther 9:263–269PubMedGoogle Scholar
  9. Garcia BA, Platt MD, Born TL, Shabanowitz J, Marcus NA, Hunt DF (2006) Protein profile of osteoarthritic human articular cartilage using tandem mass spectrometry. Rapid Commun Mass Spectrom 20:2999–3006PubMedCrossRefGoogle Scholar
  10. Graff RD, Kelley SS, Lee GM (2003) Role of pericellular matrix in development of a mechanically functional neocartilage. Biotechnol Bioeng 82:457–464PubMedCrossRefGoogle Scholar
  11. Grimaud E, Heymann D, Rédini F (2002) Recent advances in TGF-beta effects on chondrocyte metabolism. Potential therapeutic roles of TGF-beta in cartilage disorders. Cytokine Growth Factor Rev 13(3):241–257PubMedCrossRefGoogle Scholar
  12. Guilak F, Jones WR, Ting-Beall HP, Lee GM (1999) The deformation behavior and mechanical properties of chondrocytes in articular cartilage. Osteoarthr Cart 7:59–70CrossRefGoogle Scholar
  13. Guilak F, Alexopoulos LG, Upton ML, Youn I, Choi JB, Cao L, Setton LA, Haider MA (2006) The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann NY Acad Sci 1068:498–512PubMedCrossRefGoogle Scholar
  14. Han MS, Kim JE, Shin HI, Kim IS (2008) Expression patterns of beta ig-h3 in chondrocyte differentiation during endochondral ossification. Exp Mol Med 40(4):453–460PubMedCrossRefGoogle Scholar
  15. Hashimoto K, Noshiro M, Ohno S, Kawamoto T, Satakeda H, Akagawa Y, Nakashima K, Okimura A, Ishida H, Okamoto T, Pan H, Shen M, Yan W, Kato Y (1997) Characterization of a cartilage-derived 66 kDa protein (RGD-CAP/beta ig-h3) that binds to collagen. Biochim Biophys Acta 1355(3):303–314PubMedCrossRefGoogle Scholar
  16. Hikichi Y, Yoshimura K, Takigawa M (2009) All-trans retinoic acid-induced ADAM28 degrades proteoglycans in human chondrocytes. Biochem Biophys Res Commun 386(2):294–299PubMedCrossRefGoogle Scholar
  17. Hing WA, Sherwin AF, Ross JM, Poole CA (2002) The influence of the pericellular microenvironment on the chondrocyte response to osmotic challenge. Osteoarthr Cart 10:297–307CrossRefGoogle Scholar
  18. Howell SJ, Doane KJ (1998) Type VI collagen increases cell survival and prevents anti-β1 integrin-mediated apoptosis. Exp Cell Res 241:230–241PubMedCrossRefGoogle Scholar
  19. Hyytiäinen M, Taipale J, Heldin CH, Keski-Oja J (1998) Recombinant latent transforming growth factor beta-binding protein 2 assembles to fibroblast extracellular matrix and is susceptible to proteolytic processing and release. J Biol Chem 273(32):20669–20676PubMedCrossRefGoogle Scholar
  20. Irwin WA, Bergamin N, Sabatelli P, Reggiani C, Megighian A, Merlini L, Braghetta P, Columbaro M, Volpin D, Bressan GM, Bernardi P, Bonaldo P (2003) Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nat Genet 35:367–371PubMedCrossRefGoogle Scholar
  21. Kielty CM, Lees M, Shuttleworth CA, Woolley D (1993) Catabolism of intact type VI collagen microfibrils: susceptibility to degradation by serine proteinases. Biochem Biophys Res Commun 191(3):1230–1236PubMedCrossRefGoogle Scholar
  22. Knight MM, Ross JM, Sherwin AF, Lee DA, Bader DL, Poole CA (2001) Chondrocyte deformation within mechanically and enzymatically extracted chondrons compressed in agarose. Biochim Biophys Acta 1526:141–146PubMedGoogle Scholar
  23. Kusaka T, Ueno M, Miki T, Kanenishi K, Nagai Y, Huang CL, Okamoto Y, Ogawa T, Onodera M, Itoh S, Akiguchi I, Sakamoto H (2007) Accumulation of triosephosphate isomerase, with sequence homology to beta amyloid peptides, in vessel walls of the newborn piglet hippocampus. Microsc Res Tech 70(7):648–655PubMedCrossRefGoogle Scholar
  24. Kvist AJ, Nyström A, Hultenby K, Sasaki T, Talts JF, Aspberg A (2008) The major basement membrane components localize to the chondrocyte pericellular matrix––a cartilage basement membrane equivalent? Matrix Biol 27(1):22–33PubMedCrossRefGoogle Scholar
  25. Larson CM, Kelley SS, Blackwood AD, Banes AJ, Lee GM (2001) Retention of the native chondrocyte pericellular matrix results in significantly improved matrix production. Matrix Biol 21:349–359CrossRefGoogle Scholar
  26. Lee GM, Poole CA, Kelley SS, Chang J, Caterson B (1997) Isolated chondron: a viable alternative for studies of chondrocyte metabolism in vitro. Osteoarthr Cart 5:261–274CrossRefGoogle Scholar
  27. Leppänen VM, Tossavainen H, Permi P, Lehtiö L, Rönnholm G, Goldman A, Kilpelaïnen I, Pihlajamaa T (2007) Crystal structure of the N-terminal NC4 domain of collagen IX, a zinc binding member of the laminin-neurexin-sex hormone binding globulin (LNS) domain family. J Biol Chem 282(32):23219–23230PubMedCrossRefGoogle Scholar
  28. Matsuura S, Oda Y, Matono H, Izumi T, Yamamoto H, Tamiya S, Iwamoto Y, Tsuneyoshi M (2010) Overexpression of A disintegrin and metalloproteinase 28 is correlated with high histologic grade in conventional chondrosarcoma. Hum Pathol 41(3):343–351PubMedCrossRefGoogle Scholar
  29. Mitsui Y, Mochizuki S, Kodama T, Shimoda M, Ohtsuka T, Shiomi T, Chijiiwa M, Ikeda T, Kitajima M, Okada Y (2006) ADAM28 is overexpressed in human breast carcinomas: implications for carcinoma cell proliferation through cleavage of insulin-like growth factor binding protein-3. Cancer Res 66(20):9913–9920PubMedCrossRefGoogle Scholar
  30. Mochizuki S, Okada Y (2009) ADAM28 as a target for human cancers. Curr Pharm Des 15(20):2349–2358PubMedCrossRefGoogle Scholar
  31. Murray DH, Bush PG, Brenkel IJ, Hall AC (2010) Abnormal human chondrocyte morphology is related to increased levels of cell-associated IL-1β and disruption to pericellular collagen type VI. J Orthop Res 28(11):1507–1514PubMedCrossRefGoogle Scholar
  32. Ohno S, Doi T, Tsutsumi S, Okada Y, Yoneno K, Kato Y, Tanne K (2002) RGD-CAP [(beta)ig-h3] is expressed in precartilage condensation and in prehypertrophic chondrocytes during cartilage development. Biochim Biophys Acta 1572(1):114–122PubMedGoogle Scholar
  33. Park JJ, Chang HW, Jeong EJ, Roh JL, Choi SH, Jeon SY, Ko GH, Kim SY (2009) PRDX IV protects cells from radiation-induced apoptosis in head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 73(4):1196–1202PubMedCrossRefGoogle Scholar
  34. Peters HC, Otto T, Enders JT, Jin W, Moed B, Zhang Z (2011) The protective role of the pericellular matrix in chondrocyte apoptosis. Tissue Eng Part A. doi:10.1089/ten.tea.2010.0601
  35. Poole CA (1997) Articular cartilage chondron: form, function and failure. J Anat 191:1–13PubMedCrossRefGoogle Scholar
  36. Poole CA, Flint MH, Beaumont BW (1987) Chondrons in cartilage: ultrastructural analysis of the pericellular microenvironment in adult human articular cartilages. J Orthop Res 5:509–522PubMedCrossRefGoogle Scholar
  37. Poole CA, Matsuoka A, Schofield JR (1991) Chondrons from articular cartilage. III. Morphologic changes in the cellular microenvironment of chondrons isolated from osteoarthritic cartilage. Arthr Rheum 34(1):22–35CrossRefGoogle Scholar
  38. Poole CA, Ayad S, Gilbert RT (1992) Chondrons from articular cartilage. V. Immunohistochemical evaluation of type VI collagen organisation in isolated chondrons by light, confocal and electron microscopy. J Cell Sci 103(Pt 4):1101–1110PubMedGoogle Scholar
  39. Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, Salter D, van den Berg WB (2006) Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr Cart 14(1):13–29CrossRefGoogle Scholar
  40. Ross JM, Sherwin AF, Poole CA (2006) In vitro culture of enzymatically isolated chondrons: a possible model for the initiation of osteoarthritis. J Anat 209(6):793–806PubMedCrossRefGoogle Scholar
  41. Ruiz-Romero C, Lopez-Armada MJ, Blanco FJ (2005) Proteomic characterization of human normal articular chondrocytes: a novel tool for the study of osteoarthritis and other rheumatic diseases. Proteomics 5:3048–3059PubMedCrossRefGoogle Scholar
  42. Runager K, Enghild JJ, Klintworth GK (2008) Focus on molecules: transforming growth factor beta induced protein (TGFBIp). Exp Eye Res 87(4):298–299PubMedCrossRefGoogle Scholar
  43. Stevens AL, Wishnok JS, Chai DH, Grodzinsky AJ, Tannenbaum SR (2008) A sodium dodecyl sulfate-polyacrylamide gel electrophoresis-liquid chromatography tandem mass spectrometry analysis of bovine cartilage tissue response to mechanical compression injury and the inflammatory cytokines tumor necrosis factor alpha and interleukin-1beta. Arthr Rheum 58(2):489–500CrossRefGoogle Scholar
  44. Wang HQ, Du ZX, Liu BQ, Gao YY, Meng X, Guan Y, Zhang HY (2009a) TNF-related apoptosis-inducing ligand suppresses PRDX4 expression. FEBS Lett 583(9):1511–1515PubMedCrossRefGoogle Scholar
  45. Wang QG, Magnay JL, Nguyen B, Thomas CR, Zhang Z, El Haj AJ, Kuiper NJ (2009b) Gene expression profiles of dynamically compressed single chondrocytes and chondrons. Biochem Biophys Res Commun 379(3):738–742PubMedCrossRefGoogle Scholar
  46. Williamson JR, DiPietro DL (1965) Evidence for extracellular enzymic activity of the isolated perfused rat heart. Biochem J 95:226–232PubMedGoogle Scholar
  47. Wu J, Liu W, Bemis A, Wang E, Qiu Y, Morris EA, Flannery CR, Yang Z (2007) Comparative proteomic characterization of articular cartilage tissue from normal donors and patients with osteoarthritis. Arthr Rheum 56:3675–3684CrossRefGoogle Scholar
  48. Yates KE (2006) Identification of cis and trans-acting transcriptional regulators in chondroinduced fibroblasts from the pre-phenotypic gene expression profile. Gene 377:77–87PubMedCrossRefGoogle Scholar
  49. Zhang X, Huang H, McDaniel GR, Giambrone JJ (1997) Comparison of several enzymes between normal physeal and tibial dyschondroplastic cartilage of broiler chickens. Avian Dis 41(2):330–334PubMedCrossRefGoogle Scholar
  50. Zhang Z, Fan J, Becker KG, Graff RD, Lee GM, Francomano CA (2006) Gene profiles of isolated human chondrons and chondrocytes: a comparative study with cDNA microarray. Osteoarthr Cart 14:449–459CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Zijun Zhang
    • 1
  • Wu Jin
    • 1
  • Jeffrey Beckett
    • 2
  • Thomas Otto
    • 1
  • Berton Moed
    • 1
  1. 1.Department of Orthopaedic SurgerySaint Louis University, School of MedicineSt. LouisUSA
  2. 2.Center of Anatomical Science and EducationSaint Louis UniversitySt. LouisUSA

Personalised recommendations