Histochemistry and Cell Biology

, Volume 136, Issue 1, pp 25–35

Immunolocalization of WNK4 in mouse kidney

  • Mayuko Ohno
  • Keiko Uchida
  • Teiko Ohashi
  • Kosaku Nitta
  • Akihito Ohta
  • Motoko Chiga
  • Sei Sasaki
  • Shinichi Uchida
Original Paper

Abstract

Initial reports claim that WNK4 localization is mainly at intercellular junctions of distal convoluted tubules (DCT) and cortical collecting ducts (CCD) in the kidney. However, we recently clarified the major targets of WNK4 kinase to be the OSR1/SPAK kinases and the Na–Cl co-transporter (NCC), an apical membrane protein in the DCT, thus raising the question of whether the cellular localization of WNK4 is at intercellular junctions. In this study, we re-evaluate the intrarenal and intracellular immunolocalization of WNK4 in the mouse kidney using a newly generated anti-WNK4 antibody. By performing double immunofluorescence of WNK4 with several nephron-segment-specific markers, we have found that WNK4 is present in podocytes in glomeruli, the cortical thick ascending limb of Henle’s loop including macula densa, and the medullary collecting ducts (MCD), in addition to the previously identified nephron segments, i.e., DCT and CCD. These results are consistent with the finding that WNK4 constitutes a kinase cascade with OSR1/SPAK and NCC in the DCT, and highlights a novel role for WNK4 in nephron segments newly identified as being WNK4-positive in this study.

Keywords

WNK kinase Na–Cl co-transporter AQP2 water channel Immunofluorescence Immunoelectron microscopy 

Supplementary material

418_2011_827_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1333 kb)

References

  1. Chiga M, Rai T, Yang SS, Ohta A, Takizawa T, Sasaki S, Uchida S (2008) Dietary salt regulates the phosphorylation of OSR1/SPAK kinases and the sodium chloride cotransporter through aldosterone. Kidney Int 74:1403–1409PubMedCrossRefGoogle Scholar
  2. Delaloy C, Elvira-Matelot E, Clemessy M, Zhou XO, Imbert-Teboul M, Houot AM, Jeunemaitre X, Hadchouel J (2008) Deletion of WNK1 first intron results in misregulation of both isoforms in renal and extrarenal tissues. Hypertension 52:1149–1154PubMedCrossRefGoogle Scholar
  3. Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S (1993) Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361:549–552PubMedCrossRefGoogle Scholar
  4. Gordon RD (1986) Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate. Hypertension 8:93–102PubMedGoogle Scholar
  5. Jiang Y, Ferguson WB, Peng JB (2007) WNK4 enhances TRPV5-mediated calcium transport: potential role in hypercalciuria of familial hyperkalemic hypertension caused by gene mutation of WNK4. Am J Physiol Renal Physiol 292:F545–F554PubMedCrossRefGoogle Scholar
  6. Kahle KT, Wilson FH, Leng Q, Lalioti MD, O’Connell AD, Dong K, Rapson AK, MacGregor GG, Giebisch G, Hebert SC, Lifton RP (2003) WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat Genet 35:372–376PubMedCrossRefGoogle Scholar
  7. Kahle KT, Gimenez I, Hassan H, Wilson FH, Wong RD, Forbush B, Aronson PS, Lifton RP (2004a) WNK4 regulates apical and basolateral Cl- flux in extrarenal epithelia. Proc Natl Acad Sci USA 101:2064–2069PubMedCrossRefGoogle Scholar
  8. Kahle KT, Macgregor GG, Wilson FH, Van Hoek AN, Brown D, Ardito T, Kashgarian M, Giebisch G, Hebert SC, Boulpaep EL, Lifton RP (2004b) Paracellular Cl- permeability is regulated by WNK4 kinase: insight into normal physiology and hypertension. Proc Natl Acad Sci USA 101:14877–14882PubMedCrossRefGoogle Scholar
  9. Kaplan MR, Plotkin MD, Lee WS, Xu ZC, Lytton J, Hebert SC (1996) Apical localization of the Na-K-Cl cotransporter, rBSC1, on rat thick ascending limbs. Kidney Int 49:40–47PubMedCrossRefGoogle Scholar
  10. Kriz W, Kaissling B (1985) Structural organization of the mammalian kidney. In: Seldin DW, Giebish G (eds) The Kidney: physiology and pathophysiology, vol 1. Raven Press, New York, pp 265–306Google Scholar
  11. Loffing J, Loffing-Cueni D, Valderrabano V, Klausli L, Hebert SC, Rossier BC, Hoenderop JG, Bindels RJ, Kaissling B (2001) Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Renal Physiol 281:F1021–F1027PubMedGoogle Scholar
  12. Mutig K, Saritas T, Uchida S, Kahl T, Borowski T, Paliege A, Bohlick A, Bleich M, Shan Q, Bachmann S (2010) Short-term stimulation of the thiazide-sensitive Na+-Cl- cotransporter by vasopressin involves phosphorylation and membrane translocation. Am J Physiol Renal Physiol 298:F502–F509PubMedCrossRefGoogle Scholar
  13. Ohta A, Rai T, Yui N, Chiga M, Yang SS, Lin SH, Sohara E, Sasaki S, Uchida S (2009) Targeted disruption of the Wnk4 gene decreases phosphorylation of Na-Cl cotransporter, increases Na excretion and lowers blood pressure. Hum Mol Genet 18:3978–3986PubMedCrossRefGoogle Scholar
  14. O’Reilly M, Marshall E, Speirs HJ, Brown RW (2003) WNK1, a gene within a novel blood pressure control pathway, tissue-specifically generates radically different isoforms with and without a kinase domain. J Am Soc Nephrol 14:2447–2456PubMedCrossRefGoogle Scholar
  15. O’Reilly M, Marshall E, Macgillivray T, Mittal M, Xue W, Kenyon CJ, Brown RW (2006) Dietary electrolyte-driven responses in the renal WNK kinase pathway in vivo. J Am Soc Nephrol 17:2402–2413PubMedCrossRefGoogle Scholar
  16. Rafiqi FH, Zuber AM, Glover M, Richardson C, Fleming S, Jovanovic S, Jovanovic A, O’Shaughnessy KM, Alessi DR (2010) Role of the WNK-activated SPAK kinase in regulating blood pressure. EMBO Mol Med 2:63–75PubMedCrossRefGoogle Scholar
  17. Reiche J, Theilig F, Rafiqi FH, Carlo AS, Militz D, Mutig K, Todiras M, Christensen EI, Ellison DH, Bader M, Nykjaer A, Bachmann S, Alessi D, Willnow TE (2010) SORLA/SORL1 functionally interacts with SPAK to control renal activation of Na(+)-K(+)-Cl(-) cotransporter 2. Mol Cell Biol 30:3027–3037PubMedCrossRefGoogle Scholar
  18. Ring AM, Cheng SX, Leng Q, Kahle KT, Rinehart J, Lalioti MD, Volkman HM, Wilson FH, Hebert SC, Lifton RP (2007a) WNK4 regulates activity of the epithelial Na+ channel in vitro and in vivo. Proc Natl Acad Sci USA 104:4020–4024PubMedCrossRefGoogle Scholar
  19. Ring AM, Leng Q, Rinehart J, Wilson FH, Kahle KT, Hebert SC, Lifton RP (2007b) An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and has implications for aldosterone signaling and K+ homeostasis. Proc Natl Acad Sci USA 104:4025–4029PubMedCrossRefGoogle Scholar
  20. Schild L, Lu Y, Gautschi I, Schneeberger E, Lifton RP, Rossier BC (1996) Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. EMBO J 15:2381–2387PubMedGoogle Scholar
  21. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP (2001) Human hypertension caused by mutations in WNK kinases. Science 293:1107–1112PubMedCrossRefGoogle Scholar
  22. Yamauchi K, Rai T, Kobayashi K, Sohara E, Suzuki T, Itoh T, Suda S, Hayama A, Sasaki S, Uchida S (2004) Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins. Proc Natl Acad Sci USA 101:4690–4694PubMedCrossRefGoogle Scholar
  23. Yang CL, Angell J, Mitchell R, Ellison DH (2003) WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest 111:1039–1045PubMedGoogle Scholar
  24. Yang CL, Liu X, Paliege A, Zhu X, Bachmann S, Dawson DC, Ellison DH (2007a) WNK1 and WNK4 modulate CFTR activity. Biochem Biophys Res Commun 353:535–540PubMedCrossRefGoogle Scholar
  25. Yang SS, Morimoto T, Rai T, Chiga M, Sohara E, Ohno M, Uchida K, Lin SH, Moriguchi T, Shibuya H, Kondo Y, Sasaki S, Uchida S (2007b) Molecular pathogenesis of pseudohypoaldosteronism type II: generation and analysis of a Wnk4(D561A/+) knockin mouse model. Cell Metab 5:331–344PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Mayuko Ohno
    • 1
  • Keiko Uchida
    • 1
  • Teiko Ohashi
    • 1
  • Kosaku Nitta
    • 1
  • Akihito Ohta
    • 2
  • Motoko Chiga
    • 2
  • Sei Sasaki
    • 2
  • Shinichi Uchida
    • 2
  1. 1.Department of Medicine, Kidney CenterTokyo Women’s Medical UniversityTokyoJapan
  2. 2.Department of NephrologyTokyo Medical and Dental UniversityTokyoJapan

Personalised recommendations