Advertisement

Histochemistry and Cell Biology

, Volume 135, Issue 2, pp 203–213 | Cite as

Fibulin-5 expression in the human placenta

  • Martin Gauster
  • Veronika M. Berghold
  • Gerit Moser
  • Kristina Orendi
  • Monika Siwetz
  • Berthold Huppertz
Original Paper

Abstract

Fibulin-5 is a secreted extracellular matrix glycoprotein and displays a diverse panel of biological functions, which can be segregated into elastogenic as well as extra-elastogenic functions. While elastogenic functions of fibulin-5 include essential roles in early steps of elastic fibre assembly, extra-elastogenic functions are widespread. Depending on the cell type used, fibulin-5 mediates cell adherence via a subset of integrins, antagonizes angiogenesis and inhibits migration as well as proliferation of endothelial and smooth muscle cells. In this study, we focused on the spatiotemporal expression of fibulin-5 in the human placenta. With progressing gestation, placental fibulin-5 expression increased from first trimester towards term. At term, placental fibulin-5 mRNA expression is lower when compared with other well-vascularized organs such as lung, kidney, heart, uterus and testis. In first trimester, placenta immunohistochemistry localized fibulin-5 in villous cytotrophoblasts and extravillous cytotrophoblasts of the proximal cell column. In term placenta, fibulin-5 was detected in the endothelial basement membrane and adventitia-like regions of vessels in the chorionic plate and stem villi. Cell culture experiments with the villous trophoblast-derived cell line BeWo showed that fibulin-5 expression was downregulated during functional differentiation and intercellular fusion. Moreover, cultivation of BeWo cells under low oxygen conditions impaired intercellular fusion and upregulated fibulin-5 expression. The spatiotemporal shift from the trophoblast compartment in first trimester to the villous vasculature at term suggests a dual role of fibulin-5 in human placental development.

Keywords

Human placenta Fibulin-5 Trophoblast Extracellular matrix 

Notes

Acknowledgments

This work was supported by the START funding program of the Medical University of Graz granted to M. Gauster. V.M. Berghold is funded by the PhD program Molecular Medicine of the Medical University of Graz.

References

  1. Albanese C, Kay TW, Troccoli NM, Jameson JL (1991) Novel cyclic adenosine 3′, 5′-monophosphate response element in the human chorionic gonadotropin beta-subunit gene. Mol Endocrinol 5(5):693–702CrossRefPubMedGoogle Scholar
  2. Albig AR, Neil JR, Schiemann WP (2006) Fibulins 3 and 5 antagonize tumor angiogenesis in vivo. Cancer Res 66(5):2621–2629CrossRefPubMedGoogle Scholar
  3. Alsat E, Wyplosz P, Malassine A, Guibourdenche J, Porquet D, Nessmann C, Evain-Brion D (1996) Hypoxia impairs cell fusion and differentiation process in human cytotrophoblast, in vitro. J Cell Physiol 168(2):346–353CrossRefPubMedGoogle Scholar
  4. Aplin JD, Jones CJ, Harris LK (2009) Adhesion molecules in human trophoblast—a review. I. Villous trophoblast. Placenta 30(4):293–298CrossRefPubMedGoogle Scholar
  5. Barros JS, Goncalves CA, Bairos VA (2003) Elastic fibres in the human placenta. Arch Gynecol Obstet 267(4):208–212PubMedGoogle Scholar
  6. Coutifaris C, Kao LC, Sehdev HM, Chin U, Babalola GO, Blaschuk OW, Strauss JF III (1991) E-cadherin expression during the differentiation of human trophoblasts. Development 113(3):767–777PubMedGoogle Scholar
  7. Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351(Pt 1):95–105CrossRefPubMedGoogle Scholar
  8. de Vega S, Iwamoto T, Nakamura T, Hozumi K, McKnight DA, Fisher LW, Fukumoto S, Yamada Y (2007) Tm14 is a new member of the fibulin family (fibulin-7) that interacts with extracellular matrix molecules and is active for cell binding. J Biol Chem 282(42):30878–30888CrossRefPubMedGoogle Scholar
  9. Douglas GC, King BF (1990) Differentiation of human trophoblast cells in vitro as revealed by immunocytochemical staining of desmoplakin and nuclei. J Cell Sci 96(Pt 1):131–141PubMedGoogle Scholar
  10. Freeman LJ, Lomas A, Hodson N, Sherratt MJ, Mellody KT, Weiss AS, Shuttleworth A, Kielty CM (2005) Fibulin-5 interacts with fibrillin-1 molecules and microfibrils. Biochem J 388(Pt 1):1–5PubMedGoogle Scholar
  11. Gauster M, Siwetz M, Orendi K, Moser G, Desoye G, Huppertz B (2010) Caspases rather than calpains mediate remodelling of the fodrin skeleton during human placental trophoblast fusion. Cell Death Differ 17(2):336–345CrossRefPubMedGoogle Scholar
  12. Graf R, Neudeck H, Gossrau R, Vetter K (1996) Elastic fibres are an essential component of human placental stem villous stroma and an integrated part of the perivascular contractile sheath. Cell Tissue Res 283(1):133–141CrossRefPubMedGoogle Scholar
  13. Guadall A, Orriols M, Rodriguez-Calvo R, Calvayrac O, Crespo J, Aledo R, Martinez-Gonzalez J, Rodriguez C (2010) Fibulin-5 is up-regulated by hypoxia in endothelial cells through a hif-1{alpha} dependent mechanism. J Biol Chem. doi: 101074/jbcM110162917
  14. Hampl V, Jakoubek V (2009) Regulation of fetoplacental vascular bed by hypoxia. Physiol Res 58(Suppl 2):S87–S93PubMedGoogle Scholar
  15. Hayashi M, Sakata M, Takeda T, Tahara M, Yamamoto T, Minekawa R, Isobe A, Tasaka K, Murata Y (2005) Hypoxia up-regulates hypoxia-inducible factor-1alpha expression through rhoa activation in trophoblast cells. J Clin Endocrinol Metab 90(3):1712–1719CrossRefPubMedGoogle Scholar
  16. Hayashi M, Sakata M, Takeda T, Yamamoto T, Okamoto Y, Sawada K, Kimura A, Minekawa R, Tahara M, Tasaka K, Murata Y (2004) Induction of glucose transporter 1 expression through hypoxia-inducible factor 1alpha under hypoxic conditions in trophoblast-derived cells. J Endocrinol 183(1):145–154CrossRefPubMedGoogle Scholar
  17. Hirai M, Ohbayashi T, Horiguchi M, Okawa K, Hagiwara A, Chien KR, Kita T, Nakamura T (2007) Fibulin-5/dance has an elastogenic organizer activity that is abrogated by proteolytic cleavage in vivo. J Cell Biol 176(7):1061–1071CrossRefPubMedGoogle Scholar
  18. Hisanaga Y, Nakashima K, Tsuruga E, Nakatomi Y, Hatakeyama Y, Ishikawa H, Sawa Y (2009) Fibulin-5 contributes to microfibril assembly in human periodontal ligament cells. Acta Histochem Cytochem 42(5):151–157CrossRefPubMedGoogle Scholar
  19. Hu R, Jin H, Zhou S, Yang P, Li X (2007) Proteomic analysis of hypoxia-induced responses in the syncytialization of human placental cell line bewo. Placenta 28(5–6):399–407CrossRefPubMedGoogle Scholar
  20. Huang J, Davis EC, Chapman SL, Budatha M, Marmorstein LY, Word RA, Yanagisawa H (2010) Fibulin-4 deficiency results in ascending aortic aneurysms: a potential link between abnormal smooth muscle cell phenotype and aneurysm progression. Circ Res 106(3):583–592CrossRefPubMedGoogle Scholar
  21. Jakoubek V, Bibova J, Herget J, Hampl V (2008) Chronic hypoxia increases fetoplacental vascular resistance and vasoconstrictor reactivity in the rat. Am J Physiol Heart Circ Physiol 294(4):H1638–H1644CrossRefPubMedGoogle Scholar
  22. Ji YH, Ji JL, Sun FY, Zeng YY, He XH, Zhao JX, Yu Y, Yu SH, Wu W (2010) Quantitative proteomics analysis of chondrogenic differentiation of c3h10t1/2 mesenchymal stem cells by itraq labeling coupled with on-line two-dimensional LC/MS/MS. Mol Cell Proteomics 9(3):550–564CrossRefPubMedGoogle Scholar
  23. Jones CJ, Harris LK, Whittingham J, Aplin JD, Mayhew TM (2008) A re-appraisal of the morphophenotype and basal lamina coverage of cytotrophoblasts in human term placenta. Placenta 29(2):215–219CrossRefPubMedGoogle Scholar
  24. Knerr I, Schubert SW, Wich C, Amann K, Aigner T, Vogler T, Jung R, Dotsch J, Rascher W, Hashemolhosseini S (2005) Stimulation of GCMa and syncytin via cAMP mediated PKA signaling in human trophoblastic cells under normoxic and hypoxic conditions. FEBS Lett 579(18):3991–3998CrossRefPubMedGoogle Scholar
  25. Kowal RC, Richardson JA, Miano JM, Olson EN (1999) Evec, a novel epidermal growth factor-like repeat-containing protein upregulated in embryonic and diseased adult vasculature. Circ Res 84(10):1166–1176PubMedGoogle Scholar
  26. Kudo Y, Boyd CA, Sargent IL, Redman CW (2003) Hypoxia alters expression and function of syncytin and its receptor during trophoblast cell fusion of human placental bewo cells: implications for impaired trophoblast syncytialisation in pre-eclampsia. Biochim Biophys Acta 1638(1):63–71PubMedGoogle Scholar
  27. Leemhuis J, Boutillier S, Schmidt G, Meyer DK (2002) The protein kinase a inhibitor h89 acts on cell morphology by inhibiting rho kinase. J Pharmacol Exp Ther 300(3):1000–1007CrossRefPubMedGoogle Scholar
  28. Lomas AC, Mellody KT, Freeman LJ, Bax DV, Shuttleworth CA, Kielty CM (2007) Fibulin-5 binds human smooth-muscle cells through alpha5beta1 and alpha4beta1 integrins, but does not support receptor activation. Biochem J 405(3):417–428CrossRefPubMedGoogle Scholar
  29. McGrath JC, Deighan C, Briones AM, Shafaroudi MM, McBride M, Adler J, Arribas SM, Vila E, Daly CJ (2005) New aspects of vascular remodelling: the involvement of all vascular cell types. Exp Physiol 90(4):469–475CrossRefPubMedGoogle Scholar
  30. Merklinger SL, Wagner RA, Spiekerkoetter E, Hinek A, Knutsen RH, Kabir MG, Desai K, Hacker S, Wang L, Cann GM, Ambartsumian NS, Lukanidin E, Bernstein D, Husain M, Mecham RP, Starcher B, Yanagisawa H, Rabinovitch M (2005) Increased fibulin-5 and elastin in s100a4/mts1 mice with pulmonary hypertension. Circ Res 97(6):596–604CrossRefPubMedGoogle Scholar
  31. Moore RM, Redline RW, Kumar D, Mercer BM, Mansour JM, Yohannes E, Novak JB, Chance MR, Moore JJ (2009) Differential expression of fibulin family proteins in the para-cervical weak zone and other areas of human fetal membranes. Placenta 30(4):335–341CrossRefPubMedGoogle Scholar
  32. Mori M, Ishikawa G, Luo SS, Mishima T, Goto T, Robinson JM, Matsubara S, Takeshita T, Kataoka H, Takizawa T (2007) The cytotrophoblast layer of human chorionic villi becomes thinner but maintains its structural integrity during gestation. Biol Reprod 76(1):164–172CrossRefPubMedGoogle Scholar
  33. Nakamura T, Lozano PR, Ikeda Y, Iwanaga Y, Hinek A, Minamisawa S, Cheng CF, Kobuke K, Dalton N, Takada Y, Tashiro K, Ross J Jr, Honjo T, Chien KR (2002) Fibulin-5/dance is essential for elastogenesis in vivo. Nature 415(6868):171–175CrossRefPubMedGoogle Scholar
  34. Nakamura T, Ruiz-Lozano P, Lindner V, Yabe D, Taniwaki M, Furukawa Y, Kobuke K, Tashiro K, Lu Z, Andon NL, Schaub R, Matsumori A, Sasayama S, Chien KR, Honjo T (1999) Dance, a novel secreted rgd protein expressed in developing, atherosclerotic, and balloon-injured arteries. J Biol Chem 274(32):22476–22483CrossRefPubMedGoogle Scholar
  35. Nelson DM, Johnson RD, Smith SD, Anteby EY, Sadovsky Y (1999) Hypoxia limits differentiation and up-regulates expression and activity of prostaglandin H synthase 2 in cultured trophoblast from term human placenta. Am J Obstet Gynecol 180(4):896–902CrossRefPubMedGoogle Scholar
  36. Nguyen AD, Itoh S, Jeney V, Yanagisawa H, Fujimoto M, Ushio-Fukai M, Fukai T (2004) Fibulin-5 is a novel binding protein for extracellular superoxide dismutase. Circ Res 95(11):1067–1074CrossRefPubMedGoogle Scholar
  37. Orendi K, Gauster M, Moser G, Meiri H, Huppertz B (2010) The choriocarcinoma cell line BeWo: syncytial fusion and expression of syncytium-specific proteins. Reproduction 140:759–766Google Scholar
  38. Preis M, Cohen T, Sarnatzki Y, Ben Yosef Y, Schneiderman J, Gluzman Z, Koren B, Lewis BS, Shaul Y, Flugelman MY (2006) Effects of fibulin-5 on attachment, adhesion, and proliferation of primary human endothelial cells. Biochem Biophys Res Commun 348(3):1024–1033CrossRefPubMedGoogle Scholar
  39. Schiemann WP, Blobe GC, Kalume DE, Pandey A, Lodish HF (2002) Context-specific effects of fibulin-5 (DANCE/EVEC) on cell proliferation, motility, and invasion. Fibulin-5 is induced by transforming growth factor-beta and affects protein kinase cascades. J Biol Chem 277(30):27367–27377CrossRefPubMedGoogle Scholar
  40. Schneider R, Jensen SA, Whiteman P, McCullagh JS, Redfield C, Handford PA (2010) Biophysical characterisation of fibulin-5 proteins associated with disease. J Mol Biol 401:605–617Google Scholar
  41. Spencer JA, Hacker SL, Davis EC, Mecham RP, Knutsen RH, Li DY, Gerard RD, Richardson JA, Olson EN, Yanagisawa H (2005) Altered vascular remodeling in fibulin-5-deficient mice reveals a role of fibulin-5 in smooth muscle cell proliferation and migration. Proc Natl Acad Sci USA 102(8):2946–2951CrossRefPubMedGoogle Scholar
  42. Sullivan KM, Bissonnette R, Yanagisawa H, Hussain SN, Davis EC (2007) Fibulin-5 functions as an endogenous angiogenesis inhibitor. Lab Invest 87(8):818–827CrossRefPubMedGoogle Scholar
  43. Timpl R, Sasaki T, Kostka G, Chu ML (2003) Fibulins: a versatile family of extracellular matrix proteins. Nat Rev Mol Cell Biol 4(6):479–489CrossRefPubMedGoogle Scholar
  44. Wakabayashi T, Matsumine A, Nakazora S, Hasegawa M, Iino T, Ota H, Sonoda H, Sudo A, Uchida A (2010) Fibulin-3 negatively regulates chondrocyte differentiation. Biochem Biophys Res Commun 391(1):1116–1121CrossRefPubMedGoogle Scholar
  45. Wice B, Menton D, Geuze H, Schwartz AL (1990) Modulators of cyclic amp metabolism induce syncytiotrophoblast formation in vitro. Exp Cell Res 186(2):306–316CrossRefPubMedGoogle Scholar
  46. Xie L, Palmsten K, MacDonald B, Kieran MW, Potenta S, Vong S, Kalluri R (2008) Basement membrane derived fibulin-1 and fibulin-5 function as angiogenesis inhibitors and suppress tumor growth. Exp Biol Med (Maywood) 233(2):155–162CrossRefGoogle Scholar
  47. Yanagisawa H, Davis EC, Starcher BC, Ouchi T, Yanagisawa M, Richardson JA, Olson EN (2002) Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature 415(6868):168–171CrossRefPubMedGoogle Scholar
  48. Yanagisawa H, Schluterman MK, Brekken RA (2009) Fibulin-5, an integrin-binding matricellular protein: its function in development and disease. J Cell Commun Signal 3(3–4):337–347CrossRefPubMedGoogle Scholar
  49. Yoshie M, Kaneyama K, Kusama K, Higuma C, Nishi H, Isaka K, Tamura K (2010) Possible role of the exchange protein directly activated by cyclic AMP (Epac) in the cyclic AMP-dependent functional differentiation and syncytialization of human placental BeWo cells. Hum Reprod 25(9):2229–2238CrossRefPubMedGoogle Scholar
  50. Zamudio S (2003) The placenta at high altitude. High Alt Med Biol 4(2):171–191CrossRefPubMedGoogle Scholar
  51. Zheng Q, Davis EC, Richardson JA, Starcher BC, Li T, Gerard RD, Yanagisawa H (2007) Molecular analysis of fibulin-5 function during de novo synthesis of elastic fibers. Mol Cell Biol 27(3):1083–1095CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Martin Gauster
    • 1
  • Veronika M. Berghold
    • 1
  • Gerit Moser
    • 1
  • Kristina Orendi
    • 1
    • 2
  • Monika Siwetz
    • 1
  • Berthold Huppertz
    • 1
  1. 1.Institute of Cell Biology, Histology and Embryology, Center for Molecular MedicineMedical University of GrazGrazAustria
  2. 2.Institute of Human GeneticsMedical University of GrazGrazAustria

Personalised recommendations