Histochemistry and Cell Biology

, Volume 135, Issue 1, pp 1–9 | Cite as

Preparation of cryofixed cells for improved 3D ultrastructure with scanning transmission electron tomography

  • Katharina Höhn
  • Michaela Sailer
  • Li Wang
  • Myriam Lorenz
  • Marion E. Schneider
  • Paul WaltherEmail author
Original Paper


Scanning transmission electron tomography offers enhanced contrast compared to regular transmission electron microscopy, and thicker samples, up to 1 μm or more, can be analyzed, since the depth of focus and inelastic scattering are not limitations. In this study, we combine this novel imaging approach with state of the art specimen preparation by using novel light transparent sapphire specimen carrier for high-pressure freezing and a freeze substitution protocol for better contrast of membranes. This combination allows for imaging membranes and other subcellular structures with unsurpassed quality. This is demonstrated with mitochondria, where the inner and outer mitochondrial membranes as well as the membranes in the cristae appear in very close apposition with a minimal intermembrane space. These findings correspond well with old observations using freeze fracturing. In 880-nm thick sections of hemophagocytes, the three-dimensional structure of membrane sheets could be observed in the virtual sections of the tomogram. Microtubules, actin and intermediate filaments could be visualized within one sample. Intermediate filaments, however, could even be better observed in 3D using surface scanning electron tomography.


STEM tomography High-pressure freezing Membrane Cytoskeleton Mitochondrium Autophagosome Autophagy 



We thank Johannes Biskupek for help with the Titan electron microscope and especially for the parallel beam alignment, Eberhard Schmid for excellent technical support and for developing the important procedure of properly mounting the thick sections on the special copper grids, and Ganesh V. Pusapati for help with the cell cultures. This work was supported by the DFG Sonderforschungsbereich 518, project A15 and B21, by the DFG Einzelantrag WA 1458/3-1 and by The Histiocytosis Association of America.

Supplementary material

Supplementary material 1 (MOV 4,413 kb)


  1. Alberts B, Johnson A, Lewis L, Raff M, Roberts K, Walter P (2008) Molecular biology of the cell, 5th edn. Garland Publishing, New YorkGoogle Scholar
  2. Aoyama K, Takagi T, Hirase A, Miyazawa A (2008) STEM tomography for thick biological specimens. Ultramicroscopy 109:70–80CrossRefPubMedGoogle Scholar
  3. Barth S, Glick D, Macleod KF (2010) Autophagy: assays and artifacts. J Pathol 221:117–124CrossRefPubMedGoogle Scholar
  4. Baumeister W (2004) Mapping molecular landscapes inside cells. Biol Chem 385:865–872CrossRefPubMedGoogle Scholar
  5. Biskupek J, Leschner J, Walther P, Kaiser U (2010) Optimization of STEM tomography acquisition–a comparison of convergent beam and parallel beam STEM tomography. Ultramicroscopy 110:1231–1237CrossRefPubMedGoogle Scholar
  6. Buser C, Walther P (2008) Freeze-substitution: the addition of water to polar solvents enhances the retention of structure and acts at temperatures around 60°C. J Mircrosc 230:268–277CrossRefGoogle Scholar
  7. Daems WT, Wisse E (1966) Shape and attachment of the cristae mitochondriales in mouse hepatic cell mitochondria. J Ultrastruct Res 16:123–140CrossRefPubMedGoogle Scholar
  8. Engel A, Dubochet J, Kellenberger E (1976) Some progress in the use of a scanning transmission electron microscope for the observation of biomacromolecules. J Ultrastruct Res 57:322–330CrossRefPubMedGoogle Scholar
  9. Frascaroli G, Varani S, Blankenhorn N, Pretsch R, Bacher M, Leng L, Bucala R, Landini MP, Mertens T (2009) Human cytomegalovirus paralyzes macrophage motility through down-regulation of chemokine receptors, reorganization of the cytoskeleton, and release of macrophage migration inhibitory factor. J Immunol 182:477–488PubMedGoogle Scholar
  10. Hawes P, Netherton CL, Mueller M, Wileman T, Monaghan P (2007) Rapid freeze-substitution preserves membranes in high-pressure frozen tissue culture cells. J Microsc 226:182–189CrossRefPubMedGoogle Scholar
  11. Hohmann-Marriott MF, Sousa AA, Azari AA, Glushakova S, Zhang G, Zimmerberg J, Leapman RD (2009) Nanoscale 3D cellular imaging by axial scanning transmission electron tomography. Nat Methods 6:729–731CrossRefPubMedGoogle Scholar
  12. Hoppe W, Gassmann J, Hunsmann N, Schramm HJ, Sturm M (1974) Three-dimensional reconstruction of individual negatively stained yeast fatty-acid synthetase molecules from tilt series in the electron microscope. Z Physiol Chem 355:1483–1487Google Scholar
  13. Hsieh YC, Athar M, Chaudry IH (2009) When apoptosis meets autophagy: deciding cell fate after trauma and sepsis. Trends Mol Med 15:129–138CrossRefPubMedGoogle Scholar
  14. Knoll G, Brdiczka D (1983) Changes in freeze-fractured mitochondrial membranes correlated to their energetic state dynamic interactions of the boundary membranes. Biochim Biophys Acta 733:102–110CrossRefPubMedGoogle Scholar
  15. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76CrossRefPubMedGoogle Scholar
  16. Lang RD, Bronk JR (1978) A study of rapid mitochondrial structural changes in vitro by spray-freeze-etching. J Cell Biol 77:134–147CrossRefPubMedGoogle Scholar
  17. Liou W, Geuze HJ, Geelen MJH, Slot JW (1997) The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J Cell Biol 136:61–70CrossRefPubMedGoogle Scholar
  18. McDonald K (2007) Cryopreparation Methods for Electron Microscopy of Selected Model Systems. In: McIntosh JR (Ed) Cellular Electron Microscopy. (Method Cell Biol) Elsevier 79: 23–56Google Scholar
  19. Midgley PA, Weyland M, Thomas JM, Johnson BFG (2001) Z-contrast tomography: a technique in three-dimensional nanostructural analysis based on Rutherford scattering. Chem Commun 10:907–908CrossRefGoogle Scholar
  20. Müller SA, Engel A (2001) Structure and mass analysis by scanning transmission electron microscopy. Micron 32:21–31CrossRefPubMedGoogle Scholar
  21. Péranzi G, Messaoudi C, Issop L, Lacapère JJ (2010) Electron microscope tomography of native membranes. In: (Lacapère Jean-Jacques. Ed) Membrane protein structure determination: methods and protocols. Methods in molecular biology, vol. 654. Springer, pp 221–235Google Scholar
  22. Perkins GA, Tjong J, Brown JM, Poquiz PH, Scott RT, Kolson DR, Ellisman MH, Spirou GA (2010) The micro-architecture of mitochondria at active zones: electron tomography reveals novel anchoring scaffolds and cristae structured for high-rate metabolism. J Neurosc 30:1015–1026CrossRefGoogle Scholar
  23. Rabl R, Soubannier V, Scholz R, Vogel F, Mendl N, Vasiljev-Neumeyer A, Körner C, Jagasia R, Keil T, Baumeister W, Cyrklaff M, Neupert W, Reichert AS (2009) Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g. J Cell Biol 185:1047–1063CrossRefPubMedGoogle Scholar
  24. Sailer M, Höhn K, Lück S, Schmidt V, Beil M, Walther P (2010) Novel electron tomographic methods to study the morphology of keratin filament networks. Microsc Microanal 16:462–471CrossRefPubMedGoogle Scholar
  25. Schneider EM, Lorenz I, Müller-Rosenberger M, Steinbach G, Kron M, Janka-Schaub GE (2002) Hemophagocytic lymphohistiocytosis is associated with deficiencies of cellular cytolysis but normal expression of transcripts relevant to killer-cell-induced apoptosis. Blood 100:2891–2898CrossRefPubMedGoogle Scholar
  26. Seiler H (1967) Einige aktuelle Probleme der Sekundärelektronenemission. Z angew Phy 22:249–263Google Scholar
  27. Studer D, Michel M, Müller M (1989) High pressure freezing comes of age. Scanning Microsc Suppl 3:253–268PubMedGoogle Scholar
  28. Sun MG, Williams J, Munoz-Pinedo C, Perkins GA, Brown JM, Ellisman MH, Green DR, Frey TG (2007) Correlated three-dimensional light and electron microscopy reveals transformation of mitochondria during apoptosis. Nat Cell Biol 9:1057–1065CrossRefPubMedGoogle Scholar
  29. Van Driel LF, Valentijn JA, Valentijn KM, Koning RI, Koster AJ (2009) Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells. Cell Biol 88:669–684Google Scholar
  30. Walther P, Ziegler A (2002) Freeze substitution of high-pressure frozen samples: the visibility of biological membranes is improved when the substitution medium contains water. J Microsc 208:3–10CrossRefPubMedGoogle Scholar
  31. Walther P, Wehrli E, Hermann R, Müller M (1995) Double layer coating for high resolution low temperature SEM. J Microsc 179:229–237PubMedGoogle Scholar
  32. Walther P, Höhn K, Krisp H (2009) What is the true size of the mitochondrial intermembrane space? A study using high-pressure freezing and STEM tomography. In: Pabst MA and Zellnig G (eds), Proceedings of MC2009, vol. 2 Life Science. Verlag der TU Graz, pp 49–50Google Scholar
  33. Yakushevska AE, Lebbink MN, Geerts WJ, Spek L, van Donselaar EG, Jansen KA, Humbel BM, Post JA, Verkleij AJ, Koster AJ (2007) STEM tomography in cell biology. J Struct Biol 159:381–391CrossRefPubMedGoogle Scholar
  34. Zick M, Rabl R, Reichert AS (2009) Cristae formation–linking ultrastructure and function of mitochondria. Biochim Biophys Acta 1793:5–19CrossRefPubMedGoogle Scholar
  35. Zierold K, Steinbrecht A (1987) Cryofixation of diffusible elements in cells and tissues for electron probe microanalysis. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in Biological Electron Microscopy. Springer, Heidelberg, pp 3–34Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Katharina Höhn
    • 1
  • Michaela Sailer
    • 1
  • Li Wang
    • 1
    • 2
  • Myriam Lorenz
    • 3
  • Marion E. Schneider
    • 3
  • Paul Walther
    • 1
    Email author
  1. 1.Electron Microscopy FacilityUlm UniversityUlmGermany
  2. 2.Institute of Virology University Hospital UlmUlmGermany
  3. 3.Section of Experimental AnesthesiologyUniversity Hospital UlmUlmGermany

Personalised recommendations