Advertisement

Histochemistry and Cell Biology

, Volume 134, Issue 6, pp 581–589 | Cite as

LINE-1 retrotransposition events affect endothelial proliferation and migration

  • Ferya Banaz-Yaşar
  • Gyde Steffen
  • Jessica Hauschild
  • Birthe M. Bongartz
  • Gerald G. Schumann
  • Süleyman Ergün
Original Paper

Abstract

Long interspersed nuclear element-1 (LINE-1, L1) is a retrotransposon which affects the human genome by a variety of mechanisms. While LINE-1 expression is suppressed in the most somatic human cells, LINE-1 elements are activated in human cancer. Recently, high accumulation of LINE-1-encoded ORF1p and ORF2p in endothelial cells of mature human blood vessels was described. Here, we demonstrate that LINE-1 de novo retrotransposition events lead to a reduction of endothelial cell proliferation and migration in a porcine aortic endothelial (PAE) cell model. Cell cycle studies show a G0/G1 arrest in PAE cells harboring LINE-1 de novo retrotransposition events. Remarkably, in in situ analysis LINE-1-encoded ORF2p was not detectable in tumor blood vessels of different human organs while vascular endothelial cells of corresponding normal organs strongly expressed LINE-1 ORF2p. Quantitative RT-PCR analysis revealed that LINE-1 de novo retrotransposition influences selectively the expression of some angiogenic factors such as VEGF and Tie-2. Thus, our data suggest that LINE-1 de novo retrotransposition events might suppress angiogenesis and tumor vascularisation by reducing the angiogenic capacity of vascular endothelial cells.

Keywords

LINE-1 Retrotransposon Endothelial cells PAE Endothelial cell proliferation and migration 

Abbreviations

LINE-1/L1

Long interspersed nuclear element-1

PAE

Porcine aortic endothelial cells

ORF1

Open reading frame 1

ORF2

Open reading frame 2

ORFp

Open reading frame-encoded protein

References

  1. Ashwell S, Zabludoff S (2008) DNA damage detection and repair pathways—recent advances with inhibitors of checkpoint kinases in cancer therapy. Clin Cancer Res 14:4032–4037CrossRefPubMedGoogle Scholar
  2. Benndorf R, Boger RH, Ergun S, Steenpass A, Wieland T (2003) Angiotensin II type 2 receptor inhibits vascular endothelial growth factor-induced migration and in vitro tube formation of human endothelial cells. Circ Res 93:438–447CrossRefPubMedGoogle Scholar
  3. Bruyere F, Melen-Lamalle L, Blacher S, Roland G, Thiry M, Moons L, Frankenne F, Carmeliet P, Alitalo K, Libert C et al (2008) Modeling lymphangiogenesis in a three-dimensional culture system. Nat Methods 5:431–437CrossRefPubMedGoogle Scholar
  4. Burwinkel B, Kilimann MW (1998) Unequal homologous recombination between LINE-1 elements as a mutational mechanism in human genetic disease. J Mol Biol 277:513–517CrossRefPubMedGoogle Scholar
  5. Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, Lovci MT, Morell M, O’Shea KS, Moran JV, Gage FH (2009) L1 retrotransposition in human neural progenitor cells. Nature 460:1127–1131CrossRefPubMedGoogle Scholar
  6. Ergun S, Buschmann C, Heukeshoven J, Dammann K, Schnieders F, Lauke H, Chalajour F, Kilic N, Stratling WH, Schumann GG (2004) Cell type-specific expression of LINE-1 open reading frames 1 and 2 in fetal and adult human tissues. J Biol Chem 279:27753–27763CrossRefPubMedGoogle Scholar
  7. Farkash EA, Prak ET (2006) DNA damage and l1 retrotransposition. J Biomed Biotechnol 2006:37285PubMedGoogle Scholar
  8. Folkman J (2003) Angiogenesis and apoptosis. Semin Cancer Biol 13:159–167CrossRefPubMedGoogle Scholar
  9. Gasior SL, Wakeman TP, Xu B, Deininger PL (2006) The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 357:1383–1393CrossRefPubMedGoogle Scholar
  10. Goodier JL, Zhang L, Vetter MR, Kazazian HH Jr (2007) LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex. Mol Cell Biol 27:6469–6483CrossRefPubMedGoogle Scholar
  11. Han JS, Boeke JD (2005) LINE-1 retrotransposons: modulators of quantity and quality of mammalian gene expression? Bioessays 27:775–784CrossRefPubMedGoogle Scholar
  12. Kazazian HH Jr, Goodier JL (2002) LINE drive. Retrotransposition and genome instability. Cell 110:277–280CrossRefPubMedGoogle Scholar
  13. Kimberland ML, Divoky V, Prchal J, Schwahn U, Berger W, Kazazian HH Jr (1999) Full-length human L1 insertions retain the capacity for high frequency retrotransposition in cultured cells. Hum Mol Genet 8:1557–1560CrossRefPubMedGoogle Scholar
  14. Kirilyuk A, Tolstonog GV, Damert A, Held U, Hahn S, Lower R, Buschmann C, Horn AV, Traub P, Schumann GG (2008) Functional endogenous LINE-1 retrotransposons are expressed and mobilized in rat chloroleukemia cells. Nucleic Acids Res 36:648–665CrossRefPubMedGoogle Scholar
  15. Leblanc GG, Golanov E, Awad IA, Young WL (2009) Biology of vascular malformations of the brain. Stroke 40:e694–e702CrossRefPubMedGoogle Scholar
  16. Luan DD, Eickbush TH (1996) Downstream 28S gene sequences on the RNA template affect the choice of primer and the accuracy of initiation by the R2 reverse transcriptase. Mol Cell Biol 16:4726–4734PubMedGoogle Scholar
  17. Meischl C, Boer M, Ahlin A, Roos D (2000) A new exon created by intronic insertion of a rearranged LINE-1 element as the cause of chronic granulomatous disease. Eur J Hum Genet 8:697–703CrossRefPubMedGoogle Scholar
  18. Montoya-Durango DE, Liu Y, Teneng I, Kalbfleisch T, Lacy ME, Steffen MC, Ramos KS (2009) Epigenetic control of mammalian LINE-1 retrotransposon by retinoblastoma proteins. Mutat Res 665:20–28PubMedGoogle Scholar
  19. Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH Jr (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87:917–927CrossRefPubMedGoogle Scholar
  20. Mulhardt C, Fischer M, Gass P, Simon-Chazottes D, Guenet JL, Kuhse J, Betz H, Becker CM (1994) The spastic mouse: aberrant splicing of glycine receptor beta subunit mRNA caused by intronic insertion of L1 element. Neuron 13:1003–1015CrossRefPubMedGoogle Scholar
  21. Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435:903–910CrossRefPubMedGoogle Scholar
  22. Narita N, Nishio H, Kitoh Y, Ishikawa Y, Minami R, Nakamura H, Matsuo M (1993) Insertion of a 5′ truncated L1 element into the 3′ end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J Clin Invest 91:1862–1867CrossRefPubMedGoogle Scholar
  23. Oricchio E, Sciamanna I, Beraldi R, Tolstonog GV, Schumann GG, Spadafora C (2007) Distinct roles for LINE-1 and HERV-K retroelements in cell proliferation, differentiation and tumor progression. Oncogene 26:4226–4233CrossRefPubMedGoogle Scholar
  24. Ostertag EM, Kazazian HH Jr (2001) Biology of mammalian L1 retrotransposons. Annu Rev Genet 35:501–538CrossRefPubMedGoogle Scholar
  25. Rangwala SH, Kazazian HH Jr (2009) The L1 retrotransposition assay: a retrospective and toolkit. Methods 49:219–226CrossRefPubMedGoogle Scholar
  26. Rangwala SH, Zhang L, Kazazian HH Jr (2009) Many LINE1 elements contribute to the transcriptome of human somatic cells. Genome Biol 10:R100CrossRefPubMedGoogle Scholar
  27. Roman-Gomez J, Jimenez-Velasco A, Agirre X, Cervantes F, Sanchez J, Garate L, Barrios M, Castillejo JA, Navarro G, Colomer D et al (2005) Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia. Oncogene 24:7213–7223CrossRefPubMedGoogle Scholar
  28. Sciamanna I, Landriscina M, Pittoggi C, Quirino M, Mearelli C, Beraldi R, Mattei E, Serafino A, Cassano A, Sinibaldi-Vallebona P et al (2005) Inhibition of endogenous reverse transcriptase antagonizes human tumor growth. Oncogene 24:3923–3931CrossRefPubMedGoogle Scholar
  29. Seigneurin D, Guillaud P (1991) Ki-67 antigen, a cell cycle and tumor growth marker. Pathol Biol (Paris) 39:1020–1028Google Scholar
  30. Takahara T, Ohsumi T, Kuromitsu J, Shibata K, Sasaki N, Okazaki Y, Shibata H, Sato S, Yoshiki A, Kusakabe M et al (1996) Dysfunction of the Orleans reeler gene arising from exon skipping due to transposition of a full-length copy of an active L1 sequence into the skipped exon. Hum Mol Genet 5:989–993CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ferya Banaz-Yaşar
    • 1
  • Gyde Steffen
    • 2
  • Jessica Hauschild
    • 2
  • Birthe M. Bongartz
    • 1
  • Gerald G. Schumann
    • 3
  • Süleyman Ergün
    • 1
  1. 1.Institute of AnatomyUniversity Hospital EssenEssenGermany
  2. 2.Institute of Anatomy IUniversity Hospital Hamburg-EppendorfHamburgGermany
  3. 3.Paul-Ehrlich-InstituteLangenGermany

Personalised recommendations