Histochemistry and Cell Biology

, Volume 134, Issue 5, pp 423–443 | Cite as

Molecular mass spectrometry imaging in biomedical and life science research

  • Jaroslav Pól
  • Martin Strohalm
  • Vladimír Havlíček
  • Michael Volný
Review

Abstract

This review describes the current state of mass spectrometry imaging (MSI) in life sciences. A brief overview of mass spectrometry principles is presented followed by a thorough introduction to the MSI workflows, principles and areas of application. Three major desorption-ionization techniques used in MSI, namely, secondary ion mass spectrometry (SIMS), matrix-assisted laser desorption ionization (MALDI), and desorption electrospray ionization (DESI) are described, and biomedical and life science imaging applications of each ionization technique are reviewed. A separate section is devoted to data handling and current challenges and future perspectives are briefly discussed at the end.

Keywords

Mass spectrometry Chemical imaging Molecular imaging Biological surfaces DESI MALDI SIMS 

References

  1. Ageta H, Asai S, Sugiura Y, Goto-Inoue N, Zaima N, Setou M (2009) Layer-specific sulfatide localization in rat hippocampus middle molecular layer is revealed by nanoparticle-assisted laser desorption/ionization imaging mass spectrometry. Med Mol Morphol 42:16–23PubMedCrossRefGoogle Scholar
  2. Altelaar AFM, Klinkert I, Jalink K, de Lange RPJ, Adan RAH, Heeren RMA, Piersma SR (2006) Gold-enhanced biomolecular surface imaging of cells and tissue by SIMS and MALDI mass spectrometry. Anal Chem 78:734–742PubMedCrossRefGoogle Scholar
  3. Amstalden van Hove ER, Smith DF, Heeren RM (2010) A concise review of mass spectrometry imaging. J Chromatogr A 1217:3946–3954PubMedCrossRefGoogle Scholar
  4. Aoyagi S, Hayama M, Hasegawa U, Sakai K, Hoshi T, Kudo M (2004a) TOF-SIMS imaging of protein adsorption on dialysis membrane. Appl Surf Sci 231:411–415CrossRefGoogle Scholar
  5. Aoyagi S, Hayama M, Hasegawa U, Sakai K, Tozu M, Hoshi T, Kudo M (2004b) Estimation of protein adsorption on dialysis membrane by means of TOF-SIMS imaging. J Membr Sci 236:91–99CrossRefGoogle Scholar
  6. Astigarraga E, Barreda-Gomez G, Lombardero L, Fresnedo O, Castano F, Giralt MT, Ochoa B, Rodriguez-Puertas R, Fernandez JA (2008) Profiling and imaging of lipids on brain and liver tissue by matrix-assisted laser desorption/ionization mass spectrometry using 2-mercaptobenzothiazole as a matrix. Anal Chem 80:9105–9114PubMedCrossRefGoogle Scholar
  7. Atkinson SJ, Loadman PM, Sutton C, Patterson LH, Clench MR (2007) Examination of the distribution of the bioreductive drug AQ4N and its active metabolite AQ4 in solid tumours by imaging matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Spectrom 21:1271–1276PubMedCrossRefGoogle Scholar
  8. Badman ER, Patterson GE, Wells JM, Santini RE, Cooks RG (1999) Differential non-destructive image current detection in a Fourier transform quadrupole ion trap. J Mass Spectrom 34:889–894PubMedCrossRefGoogle Scholar
  9. Becker JS, Zoriy M, Dobrowolska J, Matusch A (2007) Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in elemental imaging of biological tissues and in proteomics. J Anal At Spectrom 22:736–744CrossRefGoogle Scholar
  10. Becker JS, Dobrowolska J, Zoriy M, Matusch A (2008) Imaging of uranium on rat brain sections using laser ablation inductively coupled plasma mass spectrometry: A new tool for the study of critical substructures affined to heavy metals in tissues. Rapid Commun Mass Spectrom 22:2768–2772PubMedCrossRefGoogle Scholar
  11. Benabdellah F, Touboul D, Brunelle A, Laprévote O (2009) In situ primary metabolites localization on a rat brain section by chemical mass spectrometry imaging. Anal Chem 81:5557–5560PubMedCrossRefGoogle Scholar
  12. Benassi M, Wu CP, Nefliu M, Ifa DR, Volny M, Cooks RG (2009) Redox transformations in desorption electrospray ionization. Int J Mass Spectrom 280:235–240CrossRefGoogle Scholar
  13. Bereman MS, Nyadong L, Fernandez FM, Muddiman DC (2006) Direct high-resolution peptide and protein analysis by desorption electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 20:3409–3411PubMedCrossRefGoogle Scholar
  14. Borchman D, Yappert MC (2010) Lipids and the ocular lens. J Lipid Res jlr.R004119Google Scholar
  15. Bouslimani A, Bec N, Glueckmann M, Hirtz C, Larroque C (2010) Matrix-assisted laser desorption/ionization imaging mass spectrometry of oxaliplatin derivatives in heated intraoperative chemotherapy (HIPEC)-like treated rat kidney. Rapid Commun Mass Spectrom 24:415–421PubMedCrossRefGoogle Scholar
  16. Bunch J, Clench MR, Richards DS (2004) Determination of pharmaceutical compounds in skin by imaging matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Spectrom 18:3051–3060PubMedCrossRefGoogle Scholar
  17. Burnum KE, Frappier SL, Caprioli RM (2008) Matrix-assisted laser desorption/ionization imaging mass spectrometry for the investigation of proteins and peptides. Annu Rev Anal Chem 1:689–705CrossRefGoogle Scholar
  18. Burnum KE, Cornett DS, Puolitaival SM, Milne SB, Myers DS, Tranguch S, Brown HA, Dey SK, Caprioli RM (2009) Spatial and temporal alterations of phospholipids determined by mass spectrometry during mouse embryo implantation. J Lipid Res 50:2290–2298PubMedCrossRefGoogle Scholar
  19. Caprioli RM (2008) Perspectives on imaging mass spectrometry in biology and medicine. Proteomics 8:3679–3680PubMedCrossRefGoogle Scholar
  20. Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: Localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760PubMedCrossRefGoogle Scholar
  21. Castaing R, Slodzian G (1962) Optique corpusculaire—premiers essais de microanalyse par emission ionique secondaire. Microscopie 1:395–399Google Scholar
  22. Cazares LH, Troyer D, Mendrinos S, Lance RA, Nyalwidhe JO, Beydoun HA, Clements MA, Drake RR, Semmes OJ (2009) Imaging mass spectrometry of a specific fragment of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 2 discriminates cancer from uninvolved prostate tissue. Clin Cancer Res 15:5541–5551PubMedCrossRefGoogle Scholar
  23. Chan K, Lanthier P, Liu X, Sandhu JK, Stanimirovic D, Li JJ (2009) MALDI mass spectrometry imaging of gangliosides in mouse brain using ionic liquid matrix. Anal Chim Acta 639:57–61PubMedCrossRefGoogle Scholar
  24. Chandra S (2004) 3D subcellular SIMS imaging in cryogenically prepared single cells. Appl Surf Sci 231–232:467–469CrossRefGoogle Scholar
  25. Chandra S, Smith DR, Morrison GH (2000) Subcellular imaging by dynamic SIMS ion microscopy. Anal Chem 72:104A–114APubMedCrossRefGoogle Scholar
  26. Chaurand P, Stoeckli M, Caprioli RM (1999) Direct profiling of proteins in biological tissue sections by MALDI mass spectrometry. Anal Chem 71:5263–5270PubMedCrossRefGoogle Scholar
  27. Chaurand P, Schwartz SA, Billheimer D, Xu BJ, Crecelius A, Caprioli RM (2004) Integrating histology and imaging mass spectrometry. Anal Chem 76:1145–1155PubMedCrossRefGoogle Scholar
  28. Chaurand P, Latham JC, Lane KB, Mobley JA, Polosukhin VV, Wirth PS, Nanney LB, Caprioli RM (2008a) Imaging mass spectrometry of intact proteins from alcohol-preserved tissue specimens: bypassing formalin fixation. J Proteome Res 7:3543–3555PubMedCrossRefGoogle Scholar
  29. Chaurand P, Rahman MA, Hunt T, Mobley JA, Gu G, Latham JC, Caprioli RM, Kasper S (2008b) Monitoring mouse prostate development by profiling and imaging mass spectrometry. Mol Cell Proteomics 7:411–423PubMedGoogle Scholar
  30. Chen YF, Allegood J, Liu Y, Wang E, Cachon-Gonzalez B, Cox TM, Merrill AH, Sullards MC (2008) Imaging MALDI mass spectrometry using an oscillating capillary nebulizer matrix coating system and its application to analysis of lipids in brain from a mouse model of Tay-Sachs/Sandhoff disease. Anal Chem 80:2780–2788PubMedCrossRefGoogle Scholar
  31. Chughtai K, Heeren RMA (2010) Mass spectrometric imaging for biomedical tissue analysis. Chem Rev 110:3237–3277PubMedCrossRefGoogle Scholar
  32. Clerc J, Fourre C, Fragu P (1997) Sims microscopy: Methodology, problems and perspectives in mapping drugs and nuclear medicine compounds. Cell Biol Int 21:619–633PubMedCrossRefGoogle Scholar
  33. Clowers BH, Ibrahim YM, Prior DC, Danielson WF, Belov ME, Smith RD (2008) Enhanced ion utilization efficiency using an electrodynamic ion funnel trap as an injection mechanism for ion mobility spectrometry. Anal Chem 80:612–623PubMedCrossRefGoogle Scholar
  34. Colliver TL, Brummel CL, Pacholski ML, Swanek FD, Ewing AG, Winograd N (1997) Atomic and molecular imaging at the single-cell level with TOF-SIMS. Anal Chem 69:2225–2231PubMedCrossRefGoogle Scholar
  35. Comisarow MB, Marshall AG (1996) The early development of Fourier transform ion cyclotron resonance (PT-ICR) spectroscopy. J Mass Spectrom 31:581–585PubMedCrossRefGoogle Scholar
  36. Cooks RG (2010) Foreword: desorption ionization and spray ionization: connections and progress. In: Cole RB (ed) Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications. Wiley, HobokenGoogle Scholar
  37. Cooks RG, Ouyang Z, Takats Z, Wiseman JM (2006) Ambient mass spectrometry. Science 311:1566–1570PubMedCrossRefGoogle Scholar
  38. Cornett DS, Mobley JA, Dias EC, Andersson M, Arteaga CL, Sanders ME, Caprioli RM (2006) A novel histology-directed strategy for MALDI-MS tissue profiling that improves throughput and cellular specificity in human breast cancer. Mol Cell Proteomics 5:1975–1983PubMedCrossRefGoogle Scholar
  39. Cornett DS, Frappier SL, Caprioli RM (2008) MALDI-FTICR imaging mass spectrometry of drugs and metabolites in tissue. Anal Chem 80:5648–5653PubMedCrossRefGoogle Scholar
  40. Costa AB, Cooks RG (2007) Simulation of atmospheric transport and droplet-thin film collisions in desorption electrospray ionization. Chem Commun 38:3915–3917CrossRefGoogle Scholar
  41. Costa AB, Cooks RG (2008) Simulated splashes: elucidating the mechanism of desorption electrospray ionization mass spectrometry. Chem Phys Lett 464:1–8Google Scholar
  42. Crecelius AC, Cornett DS, Caprioli RM, Williams B, Dawant BM, Bodenheimer B (2005) Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J Am Soc Mass Spectrom 16:1093–1099PubMedCrossRefGoogle Scholar
  43. De Hoffmann E, Charette J, Stroobant V (2007) Mass spectrometry: principles and applications. Wiley, ChichesterGoogle Scholar
  44. Debois D, Bralet MP, Le Naour F, Brunelle A, Laprevote O (2009) In situ lipidomic analysis of nonalcoholic fatty liver by cluster TOF-SIMS imaging. Anal Chem 81:2823–2831PubMedCrossRefGoogle Scholar
  45. Deeley JM, Hankin JA, Friedrich MG, Murphy RC, Truscott RJ, Mitchell TW, Blanksby SJ (2010) Sphingolipid distribution changes with age in the human lens. J Lipid Res 51:2753–2760PubMedCrossRefGoogle Scholar
  46. Dekker LJ, van Kampen JJ, Reedijk ML, Burgers PC, Gruters RA, Osterhaus AD, Luider TM (2009) A mass spectrometry based imaging method developed for the intracellular detection of HIV protease inhibitors. Rapid Commun Mass Spectrom 23:1183–1188PubMedCrossRefGoogle Scholar
  47. Delcorte A, Poleunis C, Bertrand P (2006) Stretching the limits of static SIMS with C60. Appl Surf Sci 252:6494–6497CrossRefGoogle Scholar
  48. Deutsch E (2008) mzML: A single, unifying data format for mass spectrometer output. Proteomics 8:2776–2777PubMedCrossRefGoogle Scholar
  49. Dickinson M, Heard PJ, Barker JHA, Lewis AC, Mallard D, Allen GC (2006) Dynamic SIMS analysis of cryo-prepared biological and geological specimens. Appl Surf Sci 252:6793–6796CrossRefGoogle Scholar
  50. Dill AL, Ifa DR, Manicke NE, Costa AB, Ramos-Vara JA, Knapp DW, Cooks RG (2009a) Lipid profiles of canine invasive transitional cell carcinoma of the urinary bladder and adjacent normal tissue by desorption electrospray ionization imaging mass spectrometry. Anal Chem 81:8758–8764PubMedCrossRefGoogle Scholar
  51. Dill AL, Ifa DR, Manicke NE, Ouyang Z, Cooks RG (2009b) Mass spectrometric imaging of lipids using desorption electrospray ionization. J Chromatogr B Anal Technol Biomed Life Sci 877:2883–2889CrossRefGoogle Scholar
  52. Djidja MC, Claude E, Snel MF, Scriven P, Francese S, Carolan V, Clench MR (2009a) MALDI-ion mobility separation-mass spectrometry imaging of glucose-regulated protein 78 kDa (Grp78) in human formalin-fixed, paraffin-embedded pancreatic adenocarcinoma tissue sections. J Proteome Res 8:4876–4884PubMedCrossRefGoogle Scholar
  53. Djidja MC, Francese S, Loadman PM, Sutton CW, Scriven P, Claude E, Snel MF, Franck J, Salzet M, Clench MR (2009b) Detergent addition to tryptic digests and ion mobility separation prior to MS/MS improves peptide yield and protein identification for in situ proteomic investigation of frozen and formalin-fixed paraffin-embedded adenocarcinoma tissue sections. Proteomics 9:2750–2763PubMedCrossRefGoogle Scholar
  54. Djidja MC, Claude E, Snel MF, Francese S, Scriven P, Carolan V, Clench MR (2010) Novel molecular tumour classification using MALDI-mass spectrometry imaging of tissue micro-array. Anal Bioanal Chem 397:587–601PubMedCrossRefGoogle Scholar
  55. Dreisewerd K (2003) The desorption process in MALDI. Chem Rev 103:395–425PubMedCrossRefGoogle Scholar
  56. Eijkel GB, Kaletas BK, van der Wiel IM, Kros JM, Luider TM, Heeren RMA (2009) Correlating MALDI and SIMS imaging mass spectrometric datasets of biological tissue surfaces. Surf Interface Anal 41:675–685CrossRefGoogle Scholar
  57. Fletcher JS, Vickerman JC (2010) A new SIMS paradigm for 2D and 3D molecular imaging of bio-systems. Anal Bioanal Chem 396:85–104PubMedCrossRefGoogle Scholar
  58. Fletcher JS, Lockyer NP, Vaidyanathan S, Vickerman JC (2007) TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C-60) primary ions. Anal Chem 79:2199–2206PubMedCrossRefGoogle Scholar
  59. Fliesler SJ (2010) Lipids and lipid metabolism in the eye. J Lipid Res 51:1–3PubMedCrossRefGoogle Scholar
  60. Fournier I, Wisztorski M, Salzet M (2008) Tissue imaging using MALDI-MS: a new frontier of histopathology proteomics. Expert Rev Proteomics 5:413–424PubMedCrossRefGoogle Scholar
  61. Garrett TJ, Dawson WW (2010) Lipid geographical analysis of the primate macula by imaging mass spectrometry, pp 247–260Google Scholar
  62. Garrett TJ, Prieto-Conaway MC, Kovtoun V, Bui H, Izgarian N, Stafford G, Yost RA (2007) Imaging of small molecules in tissue sections with a new intermediate-pressure MALDI linear ion trap mass spectrometer. Int J Mass Spectrom 260:166–176CrossRefGoogle Scholar
  63. Gillen G, Fahey A, Wagner M, Mahoney C (2006) 3D molecular imaging SIMS. Appl Surf Sci 252:6537–6541CrossRefGoogle Scholar
  64. Girod M, Shi YZ, Cheng JX, Cooks RG (2010) Desorption electrospray ionization imaging mass spectrometry of lipids in rat spinal cord. J Am Soc Mass Spectrom 21:1177–1189PubMedCrossRefGoogle Scholar
  65. Grasso G, Rizzarelli E, Spoto G (2007) AP/MALDI-MS complete characterization of the proteolytic fragments produced by the interaction of insulin degrading enzyme with bovine insulin. J Mass Spectrom 42:1590–1598PubMedCrossRefGoogle Scholar
  66. Grey AC, Schey KL (2008) Distribution of bovine and rabbit lens alpha-crystallin products by MALDI imaging mass spectrometry. Mol Vis 14:171–179PubMedGoogle Scholar
  67. Groseclose MR, Andersson M, Hardesty WM, Caprioli RM (2007) Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry. J Mass Spectrom 42:254–262PubMedCrossRefGoogle Scholar
  68. Groseclose MR, Massion PP, Chaurand P, Caprioli RM (2008) High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics 8:3715–3724PubMedCrossRefGoogle Scholar
  69. Gross JH (2004) Mass spectrometry. Springer, BerlinGoogle Scholar
  70. Hankin JA, Murphy RC (2010) Relationship between MALDI IMS intensity and measured quantity of selected phospholipids in rat brain sections. Anal Chem 82:8476–8484Google Scholar
  71. Harton SE, Stevie FA, Ade H (2006) Carbon-13 labeling for improved tracer depth profiling of organic materials using secondary ion mass spectrometry. J Am Soc Mass Spectrom 17:1142–1145PubMedCrossRefGoogle Scholar
  72. Hayasaka T, Goto-Inoue N, Sugiura Y, Zaima N, Nakanish H, Ohishi K, Nakanish S, Naito T, Taguchi R, Setou M (2008) Matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight (MALDI-QIT-TOF)-based imaging mass spectrometry reveals a layered distribution of phospholipid molecular species in the mouse retina. Rapid Commun Mass Spectrom 22:3415–3426PubMedCrossRefGoogle Scholar
  73. Heeren RMA, Smith DF, Stauber J, Kukrer-Kaletas B, MacAleese L (2009) Imaging mass spectrometry: hype or hope? J Am Soc Mass Spectrom 20:1006–1014PubMedCrossRefGoogle Scholar
  74. Herring KD, Oppenheimer SR, Caprioli RM (2007) Direct tissue analysis by matrix-assisted laser desorption ionization mass spectrometry: application to kidney biology. Semin Nephrol 27:597–608PubMedCrossRefGoogle Scholar
  75. Hopfgartner G, Varesio E, Stoeckli M (2009) Matrix-assisted laser desorption/ionization mass spectrometric imaging of complete rat sections using a triple quadrupole linear ion trap. Rapid Commun Mass Spectrom 23:733–736PubMedCrossRefGoogle Scholar
  76. Hoshi T, Kudo M (2003) High resolution static SIMS imaging by time of flight SIMS. Appl Surf Sci 203–204:818–824CrossRefGoogle Scholar
  77. Hsieh Y, Casale R, Fukuda E, Chen JW, Knemeyer I, Wingate J, Morrison R, Korfmacher W (2006) Matrix-assisted laser desorption/ionization imaging mass spectrometry for direct measurement of clozapine in rat brain tissue. Rapid Commun Mass Spectrom 20:965–972PubMedCrossRefGoogle Scholar
  78. Hu QZ, Noll RJ, Li HY, Makarov A, Hardman M, Cooks RG (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40:430–443PubMedCrossRefGoogle Scholar
  79. Ifa DR, Gumaelius LM, Eberlin LS, Manicke NE, Cooks RG (2007a) Forensic analysis of inks by imaging desorption electrospray ionization (DESI) mass spectrometry. Analyst 132:461–467PubMedCrossRefGoogle Scholar
  80. Ifa DR, Wiseman JM, Song Q, Cooks RG (2007b) Development of capabilities for imaging mass spectrometry under ambient conditions with desorption electrospray ionization (DESI). Int J Mass Spectrom 259:8–15CrossRefGoogle Scholar
  81. Jackson SN, Wang H-YJ, Woods AS (2005) In situ structural characterization of phosphatidylcholines in brain tissue using MALDI-MS/MS. J Am Soc Mass Spectrom 16:2052–2056PubMedCrossRefGoogle Scholar
  82. Jackson SN, Ugarov M, Egan T, Post JD, Langlais D, Schultz JA, Woods AS (2007) MALDI-ion mobility-TOFMS imaging of lipids in rat brain tissue. J Mass Spectrom 42:1093–1098PubMedCrossRefGoogle Scholar
  83. Jacob JT, Ham BM, Keese MM, Cole RB (2005) Identification and comparison of phosphorylated lipids in normal and dry eye rabbit tears by MALDI-TOF MS. Invest Ophthalmol Vis Sci 47:3330–3338Google Scholar
  84. Jun JH, Song ZH, Liu ZJ, Nikolau BJ, Yeung ES, Lee YJ (2010) High-spatial and high-mass resolution imaging of surface metabolites of arabidopsis thaliana by laser desorption-ionization mass spectrometry using colloidal silver. Anal Chem 82:3255–3265PubMedCrossRefGoogle Scholar
  85. Kang S, Shim HS, Lee JS, Kim DS, Kim HY, Hong SH, Kim PS, Yoon JH, Cho NH (2010) Molecular proteomics imaging of tumor interfaces by mass spectrometry. J Proteome Res 9:1157–1164PubMedCrossRefGoogle Scholar
  86. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301PubMedCrossRefGoogle Scholar
  87. Karas M, Krüger R (2003) Ion formation in MALDI: the cluster ionization mechanism. Chem Rev 103:427–439PubMedCrossRefGoogle Scholar
  88. Karas M, Glückmann M, Schäfer J (2000) Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J Mass Spectrom 35:1–12PubMedCrossRefGoogle Scholar
  89. Kelly RT, Page JS, Marginean I, Tang KQ, Smith RD (2008) Nanoelectrospray emitter arrays providing interemitter electric field uniformity. Anal Chem 80:5660–5665PubMedCrossRefGoogle Scholar
  90. Kertesz V, Van Berkel GJ (2008) Improved desorption electrospray ionization mass spectrometry performance using edge sampling and a rotational sample stage. Rapid Commun Mass Spectrom 22:3846–3850PubMedCrossRefGoogle Scholar
  91. Kertesz V, Van Berkel GJ, Vavrek M, Koeplinger KA, Schneider BB, Covey TR (2008) Comparison of drug distribution images from whole-body thin tissue sections obtained using desorption electrospray ionization tandem mass spectrometry and autoradiography. Anal Chem 80:5168–5177PubMedCrossRefGoogle Scholar
  92. Khatib-Shahidi S, Andersson M, Herman JL, Gillespie TA, Caprioli RM (2006) Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal Chem 78:6448–6456PubMedCrossRefGoogle Scholar
  93. Kim JH, Ahn BJ, Park JH, Shon HK, Yu YS, Moon DW, Lee TG, Kim KW (2008) Label-free calcium imaging in ischemic retinal tissue by TOF-SIMS. Biophys J 94:4095–4102PubMedCrossRefGoogle Scholar
  94. Kim Y, Shanta SR, Zhou L-H, Kim KP (2010) Mass spectrometry based cellular phosphoinositides profiling and phospholipid analysis: a brief review. Exp Mol Med 42:1–11PubMedCrossRefGoogle Scholar
  95. Knochenmuss R, Zenobi R (2003) MALDI ionization: the role of in-plume processes. Chem Rev 103:441–452PubMedCrossRefGoogle Scholar
  96. Konn DO, Murrell J, Despeyroux D, Gaskell SJ (2005) Comparison of the effects of ionization mechanism, analyte concentration, and ion “cool-times” on the internal energies of peptide ions produced by electrospray and atmospheric pressure matrix-assisted laser desorption ionization. J Am Soc Mass Spectrom 16:743–751PubMedCrossRefGoogle Scholar
  97. Kool J, Lingeman H, Niessen W, Irth H (2010) High throughput screening methodologies classified for major drug target classes according to target signaling pathways. Comb Chem High Throughput Screen 13:548–561PubMedCrossRefGoogle Scholar
  98. Laiko VV, Moyer SC, Cotter RJ (2000) Atmospheric pressure MALDI/ion trap mass spectrometry. Anal Chem 72:5239–5243PubMedCrossRefGoogle Scholar
  99. Layne GD, Sim KW (2000) Secondary ion mass spectrometry for the measurement of 232Th/230Th in volcanic rocks. Int J Mass Spectrom 203:187–198CrossRefGoogle Scholar
  100. Le Naour F, Bralet MP, Debois D, Sandt C, Guettier C, Dumas P, Brunelle A, Laprévote O (2009) Chemical imaging on liver steatosis using synchrotron infrared and ToF-SIMS microspectroscopies. PLoS One 4:e7408Google Scholar
  101. Lemaire R, Wisztorski M, Desmons A, Tabet JC, Day R, Salzet M, Fournier I (2006) MALDI-MS direct tissue analysis of proteins: improving signal sensitivity using organic treatments. Anal Chem 78:7145–7153PubMedCrossRefGoogle Scholar
  102. Lemaire R, Ait Menguellet S, Stauber J, Marchaudon V, Lucot J-P, Collinet P, Farine M-O, Vinatier D, Day R, Ducoroy P, Salzet M, Fournier I (2007) Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11S proteasome activator complex, reg alpha fragment, is a new potential ovary cancer biomarker. J Proteome Res 6:4127–4134PubMedCrossRefGoogle Scholar
  103. Liu Q, Xiao Y, Pagan-Miranda C, Chiu YM, He L (2009) Metabolite imaging using matrix-enhanced surface-assisted laser desorption/ionization mass spectrometry (ME-SALDI-MS). J Am Soc Mass Spectrom 20:80–88PubMedCrossRefGoogle Scholar
  104. MacAleese L, Stauber J, Heeren RMA (2009) Perspectives for imaging mass spectrometry in the proteomics landscape. Proteomics 9:819–834PubMedCrossRefGoogle Scholar
  105. Malmberg P, Nygren H, Richter K, Chen Y, Dangardt F, Friberg P, Magnusson Y (2007) Imaging of lipids in human adipose tissue by cluster ion TOF-SIMS. Microsc Res Tech 70:828–835PubMedCrossRefGoogle Scholar
  106. Mange A, Chaurand P, Perrochia H, Roger P, Caprioli RM, Solassol J (2009) Liquid chromatography-tandem and MALDI imaging mass spectrometry analyses of RCL2/CS100-fixed, paraffin-embedded tissues: proteomics evaluation of an alternate fixative for biomarker discovery. J Proteome Res 8:5619–5628PubMedCrossRefGoogle Scholar
  107. Mas S, Touboul D, Brunelle A, Aragoncillo P, Egido J, Laprevote O, Vivanco F (2007) Lipid cartography of atherosclerotic plaque by cluster-TOF-SIMS imaging. Analyst 132:24–26PubMedCrossRefGoogle Scholar
  108. Mayrhofer C, Krieger S, Raptakis E, Allmaier G (2006) Comparison of vacuum matrix-assisted laser desorption/ionization (MALDI) and atmospheric pressure MALDI (AP-MALDI) tandem mass spectrometry of 2-dimensional separated and trypsin-digested glomerular proteins for database search derived identification. J Proteome Res 5:1967–1978PubMedCrossRefGoogle Scholar
  109. McDonnell LA, Heeren RMA (2007) Imaging mass spectrometry. Mass Spectrom Rev 26:606–643PubMedCrossRefGoogle Scholar
  110. McDonnell LA, Corthals GL, Willems SM, van Remoortere A, van Zeijl RJ, Deelder AM (2010a) Peptide and protein imaging mass spectrometry in cancer research. J Proteomics 73:1921–1944PubMedCrossRefGoogle Scholar
  111. McDonnell LA, van Remoortere A, van Zeijl RJ, Dalebout H, Bladergroen MR, Deelder AM (2010b) Automated imaging MS: toward high throughput imaging mass spectrometry. J Proteomics 73:1279–1282PubMedCrossRefGoogle Scholar
  112. Meistermann H, Norris JL, Aerni HR, Cornett DS, Friedlein A, Erskine AR, Augustin A, De Vera Mudry MC, Ruepp S, Suter L, Langen H, Caprioli RM, Ducret A (2006) Biomarker discovery by imaging mass spectrometry: transthyretin is a biomarker for gentamicin-induced nephrotoxicity in rat. Mol Cell Proteomics 5:1876–1886PubMedCrossRefGoogle Scholar
  113. Mikawa S, Suzuki M, Fujimoto C, Sato K (2009) Imaging of phosphatidylcholines in the adult rat brain using MALDI-TOF MS. Neurosci Lett 451:45–49PubMedCrossRefGoogle Scholar
  114. Minerva L, Clerens S, Baggerman G, Arckens L (2008) Direct profiling and identification of peptide expression differences in the pancreas of control and ob/ob mice by imaging mass spectrometry. Proteomics 8:3763–3774PubMedCrossRefGoogle Scholar
  115. Monroe EB, Annangudi SR, Hatcher NG, Gutstein HB, Rubakhin SS, Sweedler JV (2008) SIMS and MALDI MS imaging of the spinal cord. Proteomics 8:3746–3754PubMedCrossRefGoogle Scholar
  116. Murphy RC, Hankin JA, Barkley RM (2009) Imaging of lipid species by MALDI mass spectrometry. J Lipid Res 50:S317–S322PubMedCrossRefGoogle Scholar
  117. Nicholson JK, Lindon JC (2008) Systems biology: Metabonomics. Nature 455:1054–1056PubMedCrossRefGoogle Scholar
  118. Nygren H, Hagenhoff B, Malmberg P, Nilsson M, Richter K (2007) Bioimaging TOF-SIMS: high resolution 3D imaging of single cells. Microsc Res Tech 70:969–974PubMedCrossRefGoogle Scholar
  119. Ostrowski SG, Van Bell CT, Winograd N, Ewing AG (2004) Mass spectrometric imaging of highly curved membranes during Tetrahymena mating. Science 305:71–73PubMedCrossRefGoogle Scholar
  120. Pachuta SJ, Cooks RG (1987) Mechanisms in molecular SIMS. Chem Rev (Washington, DC) 87:647–669Google Scholar
  121. Page JS, Tang K, Kelly RT, Smith RD (2008) Subambient pressure ionization with nanoelectrospray source and interface for improved sensitivity in mass spectrometry. Anal Chem 80:1800–1805PubMedCrossRefGoogle Scholar
  122. Pasilis SP, Kertesz V, Van Berkel GJ, Schulz M, Schorcht S (2008) HPTLC/DESI-MS imaging of tryptic protein digests separated in two dimensions. J Mass Spectrom 43:1627–1635PubMedCrossRefGoogle Scholar
  123. Patel SA, Barnes A, Loftus N, Martin R, Sloan P, Thakker N, Goodacre R (2009) Imaging mass spectrometry using chemical inkjet printing reveals differential protein expression in human oral squamous cell carcinoma. Analyst 134:301–307PubMedCrossRefGoogle Scholar
  124. Pierson J, Norris JL, Aerni HR, Svenningsson P, Caprioli RM, Andren PE (2004) Molecular profiling of experimental Parkinson’s disease: direct analysis of peptides and proteins on brain tissue sections by MALDI mass spectrometry. J Proteome Res 3:289–295PubMedCrossRefGoogle Scholar
  125. Pittenauer E, Zehl M, Belgacem O, Raptakis E, Mistrik R, Allmaier G (2006) Comparison of CID spectra of singly charged polypeptide antibiotic precursor ions obtained by positive-ion vacuum MALDI IT/RTOF and TOF/RTOF, AP-MALDI-IT and ESI-IT mass spectrometry. J Mass Spectrom 41:421–447PubMedCrossRefGoogle Scholar
  126. Pol J, Vidova V, Kruppa G, Kobliha V, Novak P, Lemr K, Kotiaho T, Kostiainen R, Havlicek V, Volny M (2009) Automated ambient desorption-ionization platform for surface imaging integrated with a commercial Fourier transform ion cyclotron resonance mass spectrometer. Anal Chem 81:8479–8487PubMedCrossRefGoogle Scholar
  127. Reyzer ML, Hsieh YS, Ng K, Korfmacher WA, Caprioli RM (2003) Direct analysis of drug candidates in tissue by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 38:1081–1092PubMedCrossRefGoogle Scholar
  128. Rohner TC, Staab D, Stoeckli M (2005) MALDI mass spectrometric imaging of biological tissue sections. Mech Ageing Dev 126:177–185PubMedCrossRefGoogle Scholar
  129. Roy S, Touboul D, Brunelle A, Germain DP, Laprevote O, Chaminade P (2005) Imaging mass spectrometry and direct analysis of globotriaosylceramide and galabiosylceramide in tissue. Med Sci 21:55–56Google Scholar
  130. Roy S, Touboul D, Brunelle A, Germain DP, Prognon P, Laprevote O, Chaminade P (2006) Imaging mass spectrometry: a new tool for the analysis of skin biopsy. Application in Fabry’s disease. Ann Pharm Fr 64:328–334PubMedGoogle Scholar
  131. Rubakhin SS, Jurchen JC, Monroe EB, Sweedler JV (2005) Imaging mass spectrometry: fundamentals and applications to drug discovery. Drug Discov Today 10:823–837PubMedCrossRefGoogle Scholar
  132. Rujoi M, Estrada R, Yappert MC (2004) In situ MALDI-TOF MS regional analysis of neutral phospholipids in lens tissue. Anal Chem 76:1657–1663PubMedCrossRefGoogle Scholar
  133. Sanders ME, Dias EC, Xu BJ, Mobley JA, Billheimer D, Roder H, Grigorieva J, Dowsett M, Arteaga CL, Caprioli RM (2008) Differentiating proteomic biomarkers in breast cancer by laser capture microdissection and MALDI MS. J Proteome Res 7:1500–1507PubMedCrossRefGoogle Scholar
  134. Schneider BB, Lock C, Covey TR (2005) AP and vacuum MALDI on a QqLIT instrument. J Am Soc Mass Spectrom 16:176–182PubMedCrossRefGoogle Scholar
  135. Schwamborn K, Krieg RC, Reska M, Jakse G, Knuechel R, Wellmann A (2007) Identifying prostate carcinoma by MALDI-imaging. Int J Mol Med 20:155–159PubMedGoogle Scholar
  136. Schwartz SA, Reyzer ML, Caprioli RM (2003) Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom 38:699–708PubMedCrossRefGoogle Scholar
  137. Schwartz SA, Weil RJ, Johnson MD, Toms SA, Caprioli RM (2004) Protein profiling in brain tumors using mass spectrometry: feasibility of a new technique for the analysis of protein expression. Clin Cancer Res 10:981–987PubMedCrossRefGoogle Scholar
  138. Schwartz SA, Weil RJ, Thompson RC, Shyr Y, Moore JH, Toms SA, Johnson MD, Caprioli RM (2005) Proteomic-based prognosis of brain tumor patients using direct-tissue matrix-assisted laser desorption ionization mass spectrometry. Cancer Res 65:7674–7681PubMedGoogle Scholar
  139. Setou M (2010) Imaging mass spectrometry. Springer, BerlinCrossRefGoogle Scholar
  140. Setou M, Heeren RMA, Stoeckli M, Simma S, Matsumoto M (2007) Mass microscopy. Seikagaku (J Jpn Biochem Soc) 79:874–879Google Scholar
  141. Shimma S, Sugiura Y, Hayasaka T, Hoshikawa Y, Noda T, Setou M (2007) MALDI-based imaging mass spectrometry revealed abnormal distribution of phospholipids in colon cancer liver metastasis. J Chromatogr B Anal Technol Biomed Life Sci 855:98–103CrossRefGoogle Scholar
  142. Skold K, Svensson M, Nilsson A, Zhang XQ, Nydahl K, Caprioli RM, Svenningsson P, Andren PE (2006) Decreased striatal levels of PEP-19 following MPTP lesion in the mouse. J Proteome Res 5:262–269PubMedCrossRefGoogle Scholar
  143. Snel MF, Fuller M (2010) High-spatial resolution matrix-assisted laser desorption ionization imaging analysis of glucosylceramide in spleen sections from a mouse model of Gaucher disease. Anal Chem 82:3664–3670PubMedCrossRefGoogle Scholar
  144. Solon EG, Schweitzer A, Stoeckli M, Prideaux B (2010) Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. AAPS J 12:11–26PubMedCrossRefGoogle Scholar
  145. Spoto G (2000) Secondary ion mass spectrometry in art and archaeology. Thermochim Acta 365:157–166CrossRefGoogle Scholar
  146. Stauber J, Lemaire R, Franck J, Bonnel D, Croix D, Day R, Wisztorski M, Fournier I, Salzet M (2008) MALDI Imaging of formalin-fixed paraffin-embedded tissues: application to model animals of Parkinson disease for biomarker hunting. J Proteome Res 7:969–978PubMedCrossRefGoogle Scholar
  147. Stauber J, MacAleese L, Franck J, Claude E, Snel M, Kaletas BK, Wiel I, Wisztorski M, Fournier I, Heeren RMA (2010) On-tissue protein identification and imaging by MALDI-ion mobility mass spectrometry. J Am Soc Mass Spectrom 21:338–347PubMedCrossRefGoogle Scholar
  148. Stoeckli M, Farmer TB, Caprioli RM (1999) Automated mass spectrometry imaging with a matrix-assisted laser desorption ionization time-of-flight instrument. J Am Soc Mass Spectrom 10:67–71PubMedCrossRefGoogle Scholar
  149. Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM (2001) Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med 7:493–496PubMedCrossRefGoogle Scholar
  150. Stoeckli M, Staab D, Staufenbiel M, Wiederhold KH, Signor L (2002) Molecular imaging of amyloid beta peptides in mouse brain sections using mass spectrometry. Anal Biochem 311:33–39PubMedCrossRefGoogle Scholar
  151. Stoeckli M, Staab D, Schweitzer A (2007) Compound and metabolite distribution measured by MALDI mass spectrometric imaging in whole-body tissue sections. Int J Mass Spectrom 260:195–202CrossRefGoogle Scholar
  152. Strohalm M, Kavan D, Novak P, Volny M, Havlicek V (2010) mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 82:4648–4651PubMedCrossRefGoogle Scholar
  153. Sugiura Y, Setou M (2009) Selective imaging of positively charged polar and nonpolar lipids by optimizing matrix solution composition. Rapid Commun Mass Spectrom 23:3269–3278PubMedCrossRefGoogle Scholar
  154. Sugiura Y, Setou M (2010a) Imaging mass spectrometry for visualization of drug and endogenous metabolite distribution: toward in situ pharmacometabolomes. J Neuroimmune Pharmacol 5:31–43PubMedCrossRefGoogle Scholar
  155. Sugiura Y, Setou M (2010b) Matrix-assisted laser desorption/ionization and nanoparticle-based imaging mass spectrometry for small metabolites: a practical protocol. Methods Mol Biol 656:173–195PubMedCrossRefGoogle Scholar
  156. Sugiura Y, Shimma S, Konishi Y, Yamada MK, Setou M (2008) Imaging mass spectrometry technology and application on ganglioside study; visualization of age-dependent accumulation of C20-ganglioside molecular species in the mouse hippocampus. PLoS One 3:e3232PubMedCrossRefGoogle Scholar
  157. Sugiura Y, Konishi Y, Zaima N, Kajihara S, Nakanishi H, Taguchi R, Setou M (2009) Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry. J Lipid Res 50:1776–1788PubMedCrossRefGoogle Scholar
  158. Svatos A (2010) Mass spectrometric imaging of small molecules. Trends Biotechnol 28:425–434PubMedCrossRefGoogle Scholar
  159. Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473PubMedCrossRefGoogle Scholar
  160. Takats Z, Wiseman JM, Cooks RG (2005) Ambient mass spectrometry using desorption electrospray ionization (DESI): Instrumentation, mechanisms and applications in forensics, chemistry, and biology. J Mass Spectrom 40:1261–1275PubMedCrossRefGoogle Scholar
  161. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T (1988) Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153CrossRefGoogle Scholar
  162. Tang CY, Prueksaritanont T (2010) Use of in vivo animal models to assess pharmacokinetic drug–drug interactions. Pharm Res 27:1772–1787PubMedCrossRefGoogle Scholar
  163. Todd PJ, Schaaff TG, Chaurand P, Caprioli RM (2001) Organic ion imaging of biological tissue with secondary ion mass spectrometry and matrix-assisted laser desorption/ionization. J Mass Spectrom 36:355–369PubMedCrossRefGoogle Scholar
  164. Touboul D, Piednoel H, Voisin V, De La Porte S, Brunelle A, Halgand F, Laprevote O (2004) Changes of phospholipid composition within the dystrophic muscle by matrix-assisted laser desorption/ionization mass spectrometry and mass spectrometry imaging. Eur J Mass Spectrom (Chichester, Eng) 10:657–664CrossRefGoogle Scholar
  165. Touboul D, Kollmer F, Niehuis E, Brunelle A, Laprevote O (2005) Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source. J Am Soc Mass Spectrom 16:1608–1618PubMedCrossRefGoogle Scholar
  166. Touboul D, Roy S, Germain DP, Chaminade P, Brunelle A, Laprévote O (2007) MALDI-TOF and cluster-TOF-SIMS imaging of Fabry disease biomarkers. Int J Mass Spectrom 260:158–165CrossRefGoogle Scholar
  167. Trim PJ, Atkinson SJ, Princivalle AP, Marshall PS, West A, Clench MR (2008a) Matrix-assisted laser desorption/ionisation mass spectrometry imaging of lipids in rat brain tissue with integrated unsupervised and supervised multivariant statistical analysis. Rapid Commun Mass Spectrom 22:1503–1509PubMedCrossRefGoogle Scholar
  168. Trim PJ, Henson CM, Avery JL, McEwen A, Snel MF, Claude E, Marshall PS, West A, Princivalle AP, Clench MR (2008b) Matrix-assisted laser desorption/ionization-ion mobility separation-mass spectrometry imaging of vinblastine in whole body tissue sections. Anal Chem 80:8628–8634PubMedCrossRefGoogle Scholar
  169. Ullrich M, Burenkov A, Ryssel H (2005) Ion sputtering at grazing incidence for SIMS-analysis. Nucl Instrum Methods Phys Res B Beam Interact Mater Atoms 228:373–377CrossRefGoogle Scholar
  170. Van Berkel GJ, Kertesz V (2006) Automated sampling and imaging of analytes separated on thin-layer chromatography plates using desorption electrospray ionization mass spectrometry. Anal Chem 78:4938–4944PubMedCrossRefGoogle Scholar
  171. Van Berkel GJ, Pasilis SP, Ovchinnikova O (2008) Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry. J Mass Spectrom 43:1161–1180PubMedCrossRefGoogle Scholar
  172. Van Vaeck L, Adriaens A, Gijbels R (1999) Static secondary ion mass spectrometry: (S-SIMS) part 1. Methodology and structural interpretation. Mass Spectrom Rev 18:1–47CrossRefGoogle Scholar
  173. Venter A, Sojka PE, Cooks RG (2006) Droplet dynamics and ionization mechanisms in desorption electrospray ionization mass spectrometry. Anal Chem 78:8549–8555PubMedCrossRefGoogle Scholar
  174. Venter A, Nefliu M, Graham Cooks R (2008) Ambient desorption ionization mass spectrometry. Trends Anal Chem 27:284–290CrossRefGoogle Scholar
  175. Vickerman JC (1997) Secondary ion mass spectrometry—the surface mass spectrometry. In: Vickerman JC (ed) Surface analysis—the principal techniques. Wiley, ChichesterGoogle Scholar
  176. Vidová V, Novak P, Strohalm M, Pol J, Havlicek V, Volny M (2010a) Laser desorption-ionization of lipid transfers: tissue mass spectrometry imaging without MALDI matrix. Anal Chem 82:4994–4997PubMedCrossRefGoogle Scholar
  177. Vidová V, Pol J, Volny M, Novak P, Havlicek V, Wiedmer SK, Holopainen JM (2010b) Visualizing spatial lipid distribution in porcine lens by MALDI imaging high-resolution mass spectrometry. J Lipid Res 51:2295–2302PubMedCrossRefGoogle Scholar
  178. Volný M, Tureček F (2006) High efficiency in soft landing of biomolecular ions on a plasma-treated metal surface: are double-digit yields possible? J Mass Spectrom 41:124–126PubMedCrossRefGoogle Scholar
  179. Volný M, Venter A, Smith SA, Pazzi M, Cooks RG (2008) Surface effects and electrochemical cell capacitance in desorption electrospray ionization. Analyst 133:525–531PubMedCrossRefGoogle Scholar
  180. Vrkoslav V, Muck A, Cvacka J, Svatos A (2010) MALDI imaging of neutral cuticular lipids in insects and plants. J Am Soc Mass Spectrom 21:220–231PubMedCrossRefGoogle Scholar
  181. Walch A, Rauser S, Deininger S, Höfler H (2008) MALDI imaging mass spectrometry for direct tissue analysis: a new Frontier for molecular histology. Histochem Cell Biol 130:421–434PubMedCrossRefGoogle Scholar
  182. Wang HYJ, Jackson SN, McEuen J, Woods AS (2005) Localization and analyses of small drug molecules in rat brain tissue sections. Anal Chem 77:6682–6686PubMedCrossRefGoogle Scholar
  183. Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discovery 4:594–610CrossRefGoogle Scholar
  184. Winograd N (2005) The magic of cluster SIMS. Anal Chem 77:142A–149AGoogle Scholar
  185. Wiseman JM, Ifa DR, Song Q, Cooks RG (2006) Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angewandte Chem Int Edn 45:7188–7192CrossRefGoogle Scholar
  186. Wisztorski M, Lemaire R, Stauber J, Menguelet SA, Croix D, Mathe OJ, Day R, Salzet M, Fournier I (2007) New developments in MALDI imaging for pathology proteomic studies. Curr Pharm Des 13:3317–3324PubMedCrossRefGoogle Scholar
  187. Wisztorski M, Croix D, Macagno E, Fournier I, Salzet M (2008) Molecular MALDI imaging: an emerging technology for neuroscience studies. Dev Neurobiol 68:845–858PubMedCrossRefGoogle Scholar
  188. Yanagisawa K, Shyr Y, Xu BJ, Massion PP, Larsen PH, White BC, Roberts JR, Edgerton M, Gonzalez A, Nadaf S, Moore JH, Caprioli RM, Carbone DP (2003) Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet 362:433–439PubMedCrossRefGoogle Scholar
  189. Zhigilei LV, Leveugle E, Garrison BJ, Yingling YG, Zeifman MI (2003) Computer simulations of laser ablation of molecular substrates. Chem Rev 103:321–347PubMedCrossRefGoogle Scholar
  190. Zimmerman TA, Monroe EB, Sweedler JV (2008) Adapting the stretched sample method from tissue profiling to imaging. Proteomics 8:3809–3815PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jaroslav Pól
    • 1
    • 2
  • Martin Strohalm
    • 1
  • Vladimír Havlíček
    • 1
    • 3
  • Michael Volný
    • 1
  1. 1.Laboratory of Molecular Structure CharacterizationInstitute of Microbiology of the Academy of the ASCRPragueCzech Republic
  2. 2.Division of Pharmaceutical Chemistry, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland
  3. 3.Department of Analytical Chemistry, Faculty of SciencePalacký UniversityOlomoucCzech Republic

Personalised recommendations