Histochemistry and Cell Biology

, Volume 134, Issue 4, pp 387–402 | Cite as

DNA binding sites target nuclear NFATc1 to heterochromatin regions in adult skeletal muscle fibers

  • Tiansheng Shen
  • Yewei Liu
  • Minerva Contreras
  • Erick O. Hernández-Ochoa
  • William R. Randall
  • Martin F. Schneider
Original Paper


We have previously demonstrated that Ca2+/calcineurin-dependent dephosphorylation of the transcription factor nuclear factor of activated T cells subtype 1 (NFATc1) during repetitive skeletal muscle activity causes NFAT nuclear translocation and concentration in subnuclear NFAT foci. We now show that NFAT nuclear foci colocalize with heterochromatin regions of intense staining by DAPI or TO-PRO-3 that are present in the nucleus prior to NFATc1 nuclear entry. Nuclear NFATc1 also colocalizes with the heterochromatin markers trimethyl-histone H3 (Lys9) and heterochromatin protein 1α. Mutation of the NFATc1 DNA binding sites prevents entry and localization of NFATc1 in heterochromatin regions. However, fluorescence in situ hybridization shows that the NFAT-regulated genes for slow and fast myosin heavy chains are not localized within the heterochromatin regions. Fluorescence recovery after photobleaching shows that within a given nucleus, NFATc1 redistributes relatively rapidly (t 1/2 < 1 min) between NFAT foci. Nuclear export of an NFATc1 mutant not concentrated in NFAT foci is accelerated following nuclear entry during fiber activity, indicating buffering of free nuclear NFATc1 by NFATc1 within the NFAT foci. Taken together, our results suggest that NFAT foci serve as nuclear storage sites for NFATc1, allowing it to rapidly mobilize to other nuclear regions as required.


NFAT Nuclear foci Heterochromatin Skeletal muscle 



We thank Dr. Gerald R. Crabtree (Howard Hughes Medical Institute, Stanford, CA) for providing NFATc1 cDNAs, Drs. M. DiFranco and J.L. Vergara (University of California, Los Angeles) for advice on the intramuscular plasmid injection, and Drs. Tom Misteli and Karen J. Meaburn (National Cancer Institute, National Institutes of Health, Bethesda, MD) for advice on the method of fluorescence in situ hybridization. This work was supported by NIH grant R01-AR056477 from the National Institute of Arthritis and Musculoskeletal and Skin Diseases.


  1. Bassel-Duby R, Olson EN (2006) Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75:19–37CrossRefPubMedGoogle Scholar
  2. Beals CR, Clipstone NA, Ho SN, Crabtree GR (1997) Nuclear localization of NF-ATc by a calcineurin-dependent, cyclosporin-sensitive intramolecular interaction. Genes Dev 11:824–834CrossRefPubMedGoogle Scholar
  3. Berberich-Siebelt F, Berberich I, Andrulis M, Santner-Nanan B, Jha MK, Klein-Hessling S, Schimpl A, Serfling E (2006) SUMOylation interferes with CCAAT/enhancer-binding protein beta-mediated c-myc repression, but not IL-4 activation in T cells. J Immunol 176:4843–4851PubMedGoogle Scholar
  4. Calabria E, Ciciliot S, Moretti I, Garcia M, Picard A, Dyar KA, Pallafacchina G, Tothova J, Schiaffino S, Murgia M (2009) NFAT isoforms control activity-dependent muscle fiber type specification. Proc Natl Acad Sci USA 106:13335–13340CrossRefPubMedGoogle Scholar
  5. Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, Wu H, Zhu W, Bassel-Duby R, Williams RS (1998) A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 12:2499–2509CrossRefPubMedGoogle Scholar
  6. Cobb BS, Morales-Alcelay S, Kleiger G, Brown KE, Fisher AG, Smale ST (2000) Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev 14:2146–2160CrossRefPubMedGoogle Scholar
  7. Crabtree GR, Olson EN (2002) NFAT signaling: choreographing the social lives of cells. Cell 109(Suppl):S67–S79CrossRefPubMedGoogle Scholar
  8. DiFranco M, Neco P, Capote J, Meera P, Vergara JL (2006) Quantitative evaluation of mammalian skeletal muscle as a heterologous protein expression system. Protein Expr Purif 47:281–288CrossRefPubMedGoogle Scholar
  9. Hennig R, Lomo T (1985) Firing patterns of motor units in normal rats. Nature 314:164–166CrossRefPubMedGoogle Scholar
  10. Hoey T, Sun YL, Williamson K, Xu X (1995) Isolation of two new members of the NF-AT gene family and functional characterization of the NF-AT proteins. Immunity 2:461–472CrossRefPubMedGoogle Scholar
  11. Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17:2205–2232CrossRefPubMedGoogle Scholar
  12. Jain J, Burgeon E, Badalian TM, Hogan PG, Rao A (1995) A similar DNA-binding motif in NFAT family proteins and the Rel homology region. J Biol Chem 270:4138–4145CrossRefPubMedGoogle Scholar
  13. Klemm JD, Beals CR, Crabtree GR (1997) Rapid targeting of nuclear proteins to the cytoplasm. Curr Biol 7:638–644CrossRefPubMedGoogle Scholar
  14. Kubis HP, Hanke N, Scheibe RJ, Meissner JD, Gros G (2003) Ca2+ transients activate calcineurin/NFATc1 and initiate fast-to-slow transformation in a primary skeletal muscle culture. Am J Physiol Cell Physiol 285:C56–C63PubMedGoogle Scholar
  15. Lachner M, O’Sullivan RJ, Jenuwein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116:2117–2124CrossRefPubMedGoogle Scholar
  16. Liu Y, Carroll SL, Klein MG, Schneider MF (1997) Calcium transients and calcium homeostasis in adult mouse fast-twitch skeletal muscle fibers in culture. Am J Physiol 272:C1919–C1927PubMedGoogle Scholar
  17. Liu Y, Cseresnyés Z, Randall WR, Schneider MF (2001) Activity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers. J Cell Biol 155:27–39CrossRefPubMedGoogle Scholar
  18. Liu X, Wu B, Szary J, Kofoed EM, Schaufele F (2007) Functional sequestration of transcription factor activity by repetitive DNA. J Biol Chem 282:20868–20876CrossRefPubMedGoogle Scholar
  19. Matamales M, Bertran-Gonzalez J, Salomon L, Degos B, Deniau JM, Valjent E, Herve D, Girault JA (2009) Striatal medium-size spiny neurons: identification by nuclear staining and study of neuronal subpopulations in BAC transgenic mice. PLoS ONE 4:e4770CrossRefPubMedGoogle Scholar
  20. Matera AG, Izaguire-Sierra M, Praveen K, Rajendra TK (2009) Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly? Dev Cell 17:639–647CrossRefPubMedGoogle Scholar
  21. McCullagh KJ, Calabria E, Pallafacchina G, Ciciliot S, Serrano AL, Argentini C, Kalhovde JM, Lømo T, Schiaffino S (2004) NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching. Proc Natl Acad Sci USA 101:10590–10605CrossRefPubMedGoogle Scholar
  22. Meaburn KJ, Misteli T (2008) Locus-specific and activity-independent gene repositioning during early tumorigenesis. J Cell Biol 180:39–50CrossRefPubMedGoogle Scholar
  23. Meaburn KJ, Gudla PR, Khan S, Lockett SJ, Misteli T (2009) Disease-specific gene repositioning in breast cancer. J Cell Biol 187:801–812CrossRefPubMedGoogle Scholar
  24. Meissner JD, Umeda PK, Chang KC, Gros G, Scheibe RJ (2007) Activation of the beta myosin heavy chain promoter by MEF-2D, MyoD, p300, and the calcineurin/NFATc1 pathway. J Cell Physiol 211:138–148CrossRefPubMedGoogle Scholar
  25. Misteli T (2005) Concepts in nuclear architecture. BioEssays 27:477–487CrossRefPubMedGoogle Scholar
  26. Miyakawa H, Woo SK, Dahl SC, Handler JS, Kwon HM (1999) Tonicity-responsive enhancer binding protein, a Rel-like protein that stimulates transcription in response to hypertonicity. Proc Natl Acad Sci USA 96:2538–2542CrossRefPubMedGoogle Scholar
  27. Moen PT Jr, Johnson CV, Byron M, Shopland LS, de la Serna IL, Imbalzano AN, Lawrence JB (2004) Repositioning of muscle-specific genes relative to the periphery of SC-35 domains during skeletal myogenesis. Mol Biol Cell 15:197–206CrossRefPubMedGoogle Scholar
  28. Mu X, Brown LD, Liu Y, Schneider MF (2007) Roles of the calcineurin and CaMK signaling pathways in fast-to-slow fiber type transformation of cultured adult mouse skeletal muscle fibers. Physiol Genomics 30:300–312CrossRefPubMedGoogle Scholar
  29. Nayak A, Glöckner-Pagel J, Vaeth M, Schumann JE, Buttmann M, Bopp T, Schmitt E, Serfling E, Berberich-Siebelt F (2009) Sumoylation of the transcription factor NFATc1 leads to its subnuclear relocalization and interleukin-2 repression by histone deacetylase. J Biol Chem 284:10935–10946CrossRefPubMedGoogle Scholar
  30. Parsons SA, Wilkins BJ, Bueno OF, Molkentin JD (2003) Altered skeletal muscle phenotypes in calcineurin Aalpha and Abeta gene-targeted mice. Mol Cell Biol 23:4331–4343CrossRefPubMedGoogle Scholar
  31. Rao A, Luo C, Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15:707–747CrossRefPubMedGoogle Scholar
  32. Schnedl W, Breitenbach M, Mikelsaar AV, Stranzinger G (1977) Mithramycin and DIPI: a pair of fluorochromes specific for GC- and AT-rich DNA respectively. Hum Genet 36:299–305CrossRefPubMedGoogle Scholar
  33. Shen T, Liu Y, Cseresnyés Z, Hawkins A, Randall WR, Schneider MF (2006) Activity- and calcineurin-independent nuclear shuttling of NFATc1, but not NFATc3, in adult skeletal muscle fibers. Mol Biol Cell 17:1570–1582CrossRefPubMedGoogle Scholar
  34. Shen T, Cseresnyés Z, Liu Y, Randall WR, Schneider MF (2007) Regulation of the nuclear export of the transcription factor NFATc1 by protein kinases after slow fibre type electrical stimulation of adult mouse skeletal muscle fibres. J Physiol 579:535–551CrossRefPubMedGoogle Scholar
  35. Sheridan CM, Heist EK, Beals CR, Crabtree GR, Gardner P (2002) Protein kinase A negatively modulates the nuclear accumulation of NF-ATc1 by priming for subsequent phosphorylation by glycogen synthase kinase-3. J Biol Chem 277:48664–48676CrossRefPubMedGoogle Scholar
  36. Smith KP, Moen PT Jr, Wydner KL, Coleman JR, Lawrence JB (1999) Processing of endogenous pre-mRNAs in association with SC-35 domains is gene specific. J Cell Biol 144:617–629CrossRefPubMedGoogle Scholar
  37. Terui Y, Saad N, Jia S, McKeon F, Yuan J (2004) Dual role of sumoylation in the nuclear localization and transcriptional activation of NFAT1. J Biol Chem 279:28257–28265CrossRefPubMedGoogle Scholar
  38. Tothova J, Blaauw B, Pallafacchina G, Rudolf R, Argentini C, Reggiani C, Schiaffino S (2006) NFATc1 nucleocytoplasmic shuttling is controlled by nerve activity in skeletal muscle. J Cell Sci 119:1604–16011CrossRefPubMedGoogle Scholar
  39. Verger A, Perdomo J, Crossley M (2003) Modification with SUMO. A role in transcriptional regulation. EMBO Rep 4:137–142CrossRefPubMedGoogle Scholar
  40. Vissel B, Choo KH (1989) Mouse major (gamma) satellite DNA is highly conserved and organized into extremely long tandem arrays: implications for recombination between nonhomologous chromosomes. Genomics 5:407–414CrossRefPubMedGoogle Scholar
  41. Wolfe SA, Zhou P, Dotsch V, Chen L, You A, Ho SN, Crabtree GR, Wagner G, Verdine GL (1997) Unusual Rel-like architecture in the DNA-binding domain of the transcription factor NFATc. Nature 385:172–176CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Tiansheng Shen
    • 1
  • Yewei Liu
    • 1
  • Minerva Contreras
    • 1
  • Erick O. Hernández-Ochoa
    • 1
  • William R. Randall
    • 2
  • Martin F. Schneider
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Department of Pharmacology and Experimental TherapeuticsUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations