Histochemistry and Cell Biology

, Volume 134, Issue 2, pp 171–196

Albumin-based nanoparticles as magnetic resonance contrast agents: II. Physicochemical characterisation of purified and standardised nanoparticles

  • A. A. Abdelmoez
  • G. C. Thurner
  • E. A. Wallnöfer
  • N. Klammsteiner
  • C. Kremser
  • H. Talasz
  • M. Mrakovcic
  • E. Fröhlich
  • W. Jaschke
  • P. Debbage
Original Paper


We are developing a nanoparticulate histochemical reagent designed for histochemistry in living animals (molecular imaging), which should finally be useful in clinical imaging applications. The iterative development procedure employed involves conceptual design of the reagent, synthesis and testing of the reagent, then redesign based on data from the testing; each cycle of testing and development generates a new generation of nanoparticles, and this report describes the synthesis and testing of the third generation. The nanoparticles are based on human serum albumin and the imaging modality selected is magnetic resonance imaging (MRI). Testing the second particle generation with newly introduced techniques revealed the presence of impurities in the final product, therefore we replaced dialysis with diafiltration. We introduced further testing methods including thin layer chromatography, arsenazo III as chromogenic assay for gadolinium, and several versions of polyacrylamide gel electrophoresis, for physicochemical characterisation of the nanoparticles and intermediate synthesis compounds. The high grade of chemical purity achieved by combined application of these methodologies allowed standardised particle sizes to be achieved (low dispersities), and accurate measurement of critical physicochemical parameters influencing particle size and imaging properties. Regression plots confirmed the high purity and standardisation. The good degree of quantitative physicochemical characterisation aided our understanding of the nanoparticles and allowed a conceptual model of them to be prepared. Toxicological screening demonstrated the extremely low toxicity of the particles. The high magnetic resonance relaxivities and enhanced mechanical stability of the particles make them an excellent platform for the further development of MRI molecular imaging.


Albumin nanoparticles MRI Gadolinium Targeting PEGylation Molecular imaging 


  1. Abuchowski A, van Es T, Palczuk NC, Davis FF (1977) Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem 11:3578–3581Google Scholar
  2. Alimarin IP, Savvin SB (1966) Application of arsenazo III and other azo-compounds in the photometric determination of certain elements. Pure Appl Chem 13:445–456CrossRefGoogle Scholar
  3. André C, Guillaume YC (2004) Zinc–human serum albumin association: testimony of two binding sites. Talanta 63:503–508CrossRefPubMedGoogle Scholar
  4. Balbirnie M, Grothe R, Eisenberg DS (2001) An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid. Proc Natl Acad Sci 98:2375–2380CrossRefPubMedGoogle Scholar
  5. Basargin NN, Ivanov VM, Kuznetsov VV, Mikhaliova AV (2000) 40 years since the discovery of the arsenazo III reagent. J Anal Chem 55:204–210CrossRefGoogle Scholar
  6. Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I, Kirk GA (2007) Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned. Am J Roentgenol 188:586–592CrossRefGoogle Scholar
  7. Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45:153–203CrossRefPubMedGoogle Scholar
  8. Chen RF (1967) Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem 242:173–181PubMedGoogle Scholar
  9. Chick H, Martin CJ (1912) The density and solution volume of some proteins. Chem Ind Kolloide Zeitsch 11:102–107CrossRefGoogle Scholar
  10. Choppin GR, Schaab KM (1996) Lanthanide(III) complexation with ligands as possible contrast enhancing agents for MRI. Inorganica Chim Acta 252:299–310CrossRefGoogle Scholar
  11. Davidson SE, McKenzie JL, Beard MEJ, Hart DNJ (1988) The tissue distribution of the 3α-fucosyl-N-acetyl lactosamine determinant recognized by the Cd15 monoclonal antibodies Cmrf-7 and 27. Pathology 20:24–31CrossRefPubMedGoogle Scholar
  12. Debbage PL (1996) A systematic histochemical investigation in mammals of the dense glycocalyx glycosylations common to all cells bordering the interstitial fluid compartment of the brain. Acta Histochem 98:9–28PubMedGoogle Scholar
  13. Debbage P (2009) Targeted drugs and nanomedicine: present and future. Curr Pharm Des 15:153–172CrossRefPubMedGoogle Scholar
  14. Debbage P, Jaschke W (2008) Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochem Cell Biol 130:845–875CrossRefPubMedGoogle Scholar
  15. Fehske KJ, Muller WE, Wollert U (1981) The location of drug binding sites in human serum albumin. Biochem Pharmacol 30:687–692CrossRefPubMedGoogle Scholar
  16. Flacke S, Fischer S, Scott MJ, Fuhrhop RJ, Allen JS, McLean M, Winter P, Sicard GA, Gaffney PJ, Wickline SA, Lanza GM (2001) Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104:1280–1285CrossRefPubMedGoogle Scholar
  17. Foster JF, Sogami M, Peterson HA, Leonard WJ (1965) The microheterogeneity of plasma albumins. II. Preparation and solubility properties of subfractions. J Biol Chem 240:2503–2507PubMedGoogle Scholar
  18. Frokjaer S, Otzen DE (2005) Protein drug stability: a formulation challenge. Nat Rev Drug Discov 4:298–306CrossRefPubMedGoogle Scholar
  19. Gao H, Baohua J, Jäger IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Nat Acad Sci USA 100:5597–5600CrossRefPubMedGoogle Scholar
  20. Goldschmidt L, Teng PK, Riek R, Eisenberg D (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci 107:3487–3492CrossRefPubMedGoogle Scholar
  21. Goldwasser P, Feldman J (1997) Association of serum albumin and mortality risk. J Clin Epidemiol 50:693–703CrossRefPubMedGoogle Scholar
  22. Gonzalez ER, Kannewurf BS (1998) Clinical review of appropriate uses for albumin. US Pharm 23:HS15–HS26Google Scholar
  23. Griffel MI, Kaufman BS (1992) Pharmacology of colloids and crystalloids. Crit Care Clin 8:235–253PubMedGoogle Scholar
  24. Griffiths JR, Glickson JD (2000) Monitoring pharmacokinetics of anticancer drugs: non-invasive investigation using magnetic resonance spectroscopy. Adv Drug Deliv Rev 41:75–89CrossRefPubMedGoogle Scholar
  25. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499CrossRefPubMedGoogle Scholar
  26. Hengerer A, Grimm J (2006) Molecular magnetic resonance imaging. Biomed Imaging Interv J 2:e8. doi:10.2349/biij.2.2.e8. http://www.biij.org/2006/2/e8
  27. Irache JM, Durrer C, Duchene D, Ponchel G (1994) In vitro study of lectin–latex conjugates for specific bioadhesion. J Control Release 31:181–188CrossRefGoogle Scholar
  28. Jaffer FA, Weissleder R (2005) Molecular imaging in the clinical arena. JAMA 293:855–862CrossRefPubMedGoogle Scholar
  29. Karst D, Yang Y (2006) Molecular modeling study of the resistance of PLA to hydrolysis based on the blending of PLLA and PDLA. Polymer 47:4845–4850CrossRefGoogle Scholar
  30. Końska G, Zamorska L, Pituch-Noworolska A, Szmaciarz M, Guillot J (2003) Application of fluorescein-labelled lectins with different glycan-binding specificities to the studies of cellular glycoconjugates in human full-term placenta. Folia Histochem Cytobiol 41:155–160PubMedGoogle Scholar
  31. Kragh-Hansen U (1981) Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 33:17–53PubMedGoogle Scholar
  32. Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE (2007) Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 242:647–649CrossRefPubMedGoogle Scholar
  33. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci 105:14265–14270CrossRefPubMedGoogle Scholar
  34. Maceke HR, Riesen A, Ritter W (1989) The molecular structure of indium-DTPA. J Nucl Med 30:1235–1239Google Scholar
  35. Magnotti R (2008) Detection of gadolinium chelates. World Patent WO 2008/045767 A2Google Scholar
  36. Means GE, Feeney RE (1995) Reductive alkylation of proteins. Anal Biochem 224:1–16CrossRefPubMedGoogle Scholar
  37. Montero EI, Benedetti BT, Mangrum JB, Oehlsen MJ, Qu Y, Farrell NP (2007) Pre-association of polynuclear platinum anticancer agents on a protein, human serum albumin. Implications for drug design. Dalton Trans 43:4938–4942CrossRefPubMedGoogle Scholar
  38. Mulder WJM, Strijkers GJ, van Tilborg GAF, Griffioen AW, Nicolay K (2006) Review article: lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19:142–164CrossRefPubMedGoogle Scholar
  39. Nagaraja TN, Croxen RL, Panda S, Knight RA, Keenan KA, Brown SL, Fenstermacher JD, Ewing JR (2006) Application of arsenazo III in the preparation and characterization of an albumin-linked, gadolinium-based macromolecular magnetic resonance contrast agent. J Neurosci Meth 157:238–245CrossRefGoogle Scholar
  40. Nelson R, Sawaya MR, Balbirnie M, Madsen AØ, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-ß spine of amyloid-like fibrils. Nature 435:773–778CrossRefPubMedGoogle Scholar
  41. Olde Damink LH, Dijkstra PJ, van Luyn MJ, van Wachem PB, Nieuwenhuis P, Feijen J (1996) In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide. Biomaterials 17:679–684CrossRefPubMedGoogle Scholar
  42. Paschkunova-Martic I, Kremser C, Mistlberger K, Shcherbakova N, Dietrich H, Talasz H, Zou Y, Hugl B, Galanski M, Sölder E, Pfaller K, Höliner I, Buchberger W, Keppler B, Debbage P (2005) Design, synthesis, physical and chemical characterization, and biological interactions of lectin-targeted latex nanoparticles bearing Gd-DTPA chelates: an exploration of magnetic resonance molecular imaging (MRMI). Histochem Cell Biol 123:283–301CrossRefPubMedGoogle Scholar
  43. Peters T Jr (1985) Serum albumin. Adv Protein Chem 37:161–245CrossRefPubMedGoogle Scholar
  44. Putnam FW (1984) The Plasma Proteins, vol 4, 2nd edn. Academic Press, LondonGoogle Scholar
  45. Rainey TG, Read CA (1994) The pharmacological approach to the critically ill patient, 3rd edn. Williams & Wilkins, Baltimore, pp 272–290Google Scholar
  46. Rehman S, Jayson GC (2005) Molecular imaging of antiangiogenic agents. Oncol Cancer Imaging 10:92–103Google Scholar
  47. Rinck PA (2008) Radiologists meet with heavy collateral damage. Diagnostic Imaging Europe, November 2008, pp 19–22Google Scholar
  48. Robbens J, Vanparys C, Nobels I, Blust R, van Hoecke K, Janssen C, de Schamphelaere K, Roland K, Blanchard G, Silvestre F, Gillardin V, Kestemont P, Anthonissen R, Toussaint O, Vankoningsloo S, Saout C, Alfaro-Moreno E, Hoet P, Gonzalez L, Dubruel P, Troisfontaines P (2010) Eco-, geno- and human toxicology of bio-active nanoparticles for biomedical applications. Toxicology 296:170–181CrossRefGoogle Scholar
  49. Rocke AJ (2010) Image and reality: Kekulé, Kopp, and the scientific imagination. University of Chicago Press, USA, p 416Google Scholar
  50. Rofsky NM, Sherry AD, Lenkinski RE (2008) Nephrogenic systemic fibrosis: a chemical perspective. Radiology 247:608–612CrossRefPubMedGoogle Scholar
  51. Rohwer H, Hosten E (1997) pH dependence of the reactions of arsenazo III with the lanthanides. Anal Chim Acta 339:271–277CrossRefGoogle Scholar
  52. Rowatt E, Williams RJP (1989) The interaction of cations with the dye arsenazo III. Biochem J 259:295–298PubMedGoogle Scholar
  53. Rowe JD, Bobilya DJ (2000) Albumin facilitates zinc acquisition by endothelial cells. Proc Soc Exp Biol Med 224:178–186CrossRefPubMedGoogle Scholar
  54. Saito R, Bringas JR, McKnight TR, Wendland MF, Mamot Ch, Drummond DC, Kirpotin DB, Park JW, Berger MS, Bankiewicz KS (2004) Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging. Cancer Res 64:2572–2579CrossRefPubMedGoogle Scholar
  55. Schnabel J (2010) The dark side of proteins. Nature 464:828–829CrossRefPubMedGoogle Scholar
  56. Shih C (1995) Chain-end scission in acid catalyzed hydrolysis of poly(D, Llactide) in solution. J Control Release 34:9–15CrossRefGoogle Scholar
  57. Shrake A, Frazier D, Schwarz FP (2005) Thermal stabilization of human albumin by medium- and short-chain n-alkyl fatty acid anions. Biopolymers 81:235–248CrossRefGoogle Scholar
  58. Soenen SJH, Desender L, De Cuyper M (2007) Complexation of gadolinium(III) ions on top of nanometre-sized magnetoliposomes. Int J Environ Anal Chem 87:783–796CrossRefGoogle Scholar
  59. Spector AA (1975) Fatty acid binding to plasma albumin. J Lipid Res 16:165–179PubMedGoogle Scholar
  60. Stewart AJ, Blindauer CA, Berezenko S, Sleep D, Sadler PJ (2003) Interdomain zinc site on human albumin. Proc Natl Acad Sci 100:3701–3706CrossRefPubMedGoogle Scholar
  61. Stollenwerk MM, Pashkunova-Martic I, Kremser C, Talasz H, Thurner GC, Abdelmoez AA, Wallnöfer EA, Helbok A, Neuhauser E, Klammsteiner N, Klimaschewski L, von Guggenberg E, Fröhlich E, Keppler B, Jaschke W, Debbage P (2010) Albumin-based nanoparticles as Magnetic Resonance contrast agents: I. Concept, first syntheses and characterisation. Histochem Cell Biol 133:375–404. doi:10.1007/s00418-010-0676-z CrossRefPubMedGoogle Scholar
  62. Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (1999) Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng 12:439–446CrossRefPubMedGoogle Scholar
  63. Suh WH, Suslick KS, Stucky GD, Suh YH (2009) Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 87:133–170CrossRefPubMedGoogle Scholar
  64. Utsumi H, Yamada K, Ichikawa K, Sakai K, Kinoshita Y, Matsumoto S, Nagai M (2006) Simultaneous molecular imaging of redox reactions monitored by overhauser-enhanced MRI with 14N- and 15N-labeled nitroxyl radicals. Proc Natl Acad Sci 103:1463–1468CrossRefPubMedGoogle Scholar
  65. Vega-Villa KR, Takemoto JK, Yáñez JA, Remsberg CM, Laird Forrest M, Davies NM (2008) Clinical toxicities of nanocarrier systems. Adv Drug Deliv Rev 60:929–938CrossRefPubMedGoogle Scholar
  66. Veronese FM (2001) Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22:405–417CrossRefPubMedGoogle Scholar
  67. Wang J, Karihaloo BL, Duan HL (2007) Nano-mechanics or how to extend continuum mechanics to nano-scale. Bull Polish Acad Sci 55:133–140Google Scholar
  68. Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, Allen JS, Lacy EK, Robertson JD, Lanza GM, Wickline SA (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with αvß3-integrin-targeted nanoparticles. Circulation 108:2270–2274CrossRefPubMedGoogle Scholar
  69. Zalipsky S (1995a) Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv Drug Deliv Rev 16:157–182CrossRefGoogle Scholar
  70. Zalipsky S (1995b) Functionalized poly(ethy1ene glycol) for preparation of biologically relevant conjugates. Bioconjug Chem Rev 6:150–165CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • A. A. Abdelmoez
    • 1
    • 5
  • G. C. Thurner
    • 1
  • E. A. Wallnöfer
    • 1
  • N. Klammsteiner
    • 2
  • C. Kremser
    • 1
  • H. Talasz
    • 3
  • M. Mrakovcic
    • 4
  • E. Fröhlich
    • 4
  • W. Jaschke
    • 1
  • P. Debbage
    • 2
  1. 1.Department of RadiologyInnsbruck Medical UniversityInnsbruckAustria
  2. 2.Department of Anatomy, Histology and EmbryologyInnsbruck Medical UniversityInnsbruckAustria
  3. 3.Biozentrum of the Medical University Innsbruck, Section for Clinical BiochemistryInnsbruckAustria
  4. 4.Center for Medical ResearchGrazAustria
  5. 5.Department of Pharmaceutical Organic Chemistry, Faculty of PharmacyAssiut UniversityAssiutEgypt

Personalised recommendations