Isolation and in vitro characterisation of dental pulp stem cells from natal teeth

  • Erdal Karaöz
  • Burcu Nur Doğan
  • Ayça Aksoy
  • Gülçin Gacar
  • Serap Akyüz
  • Selda Ayhan
  • Zehra Seda Genç
  • Sinan Yürüker
  • Gökhan Duruksu
  • Pınar Çetinalp Demircan
  • Ayla Eker Sarıboyacı
Original Paper

Abstract

Dental pulp stem cells were primarily derived from the pulp tissues of exfoliated deciduous teeth, primary incisors and permanent third molar teeth. The aim of this study was to isolate and extensively characterise SCs derived from human natal dental pulp (hNDP). For characterisation, proliferation capacity, phenotypic properties, ultrastructural and differentiation characteristics and gene expression profiles were utilised. A comparison was done between the properties of NDP-SCs and the properties of mesenchymal stem cells (MSCs) from bone marrow (BM) of the human. Stem cells isolated from hNDP and hBM were analysed by flow cytometry, reverse transcriptase-PCR, Real Time-PCR, and immunocytochemistry. Both cell lines were directionally differentiated towards adipogenic, osteogenic chondrogenic, myogenic and neurogenic lineages. hNDP-SCs and hBM-MSCs expressed CD13, CD44, CD90, CD146 and CD166, but not CD3, CD8, CD11b, CD14, CD15, CD19, CD33, CD34, CD45, CD117, and HLA-DR. Ultrastructural characteristics of hNDP-SCs showed more developed and metabolically active cells. hNDP-SCs and hBM-MSCs expressed some adipogenic (leptin, adipophilin and PPARγ), myogenic (desmin, myogenin, myosinIIa, and α-SMA), neurogenic (γ-enolase, MAP2a,b, c-fos, nestin, NF-H, NF-L, GFAP and betaIII tubulin), osteogenic (osteonectin, osteocalcin, osteopontin, Runx-2, and type I collagen) and chondrogenic (type II collagen, SOX9) markers without any stimulation towards differentiation under basal conditions. Embryonic stem cell markers Oct4, Rex-1, FoxD-3, Sox2, and Nanog were also identified. The differentiation potential of hNDP-SCs and hBM-MSCs to adipogenic, osteogenic, chondrogenic, myogenic and neurogenic was shown. This report described the first successful isolation and characterisation of hNDP-SCs.

Keywords

Human Dental pulp Natal teeth Bone marrow Mesenchymal stem cell In vitro Characterisation 

References

  1. Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S (2008) Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 26:1787–1795CrossRefPubMedGoogle Scholar
  2. Bjerre L, Bunger CE, Kassem M, Mygind T (2008) Flow perfusion culture of human mesenchymal stem cells on silicate-substituted tricalcium phosphate scaffolds. Biomaterials 29:2616–2627CrossRefPubMedGoogle Scholar
  3. d’Aquino R, Graziano A, Sampaolesi M, Laino G, Pirozzi G, De Rosa A, Papaccio G (2007) Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ 14:1162–1171CrossRefPubMedGoogle Scholar
  4. Gandia C, Armiñan A, García-Verdugo JM et al (2008) Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells 26:638–645CrossRefPubMedGoogle Scholar
  5. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630CrossRefPubMedGoogle Scholar
  6. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535CrossRefPubMedGoogle Scholar
  7. Huang AH, Chen YK, Lin LM, Shieh TY, Chan AW (2008) Isolation and characterization of dental pulp stem cells from a supernumerary tooth. J Oral Pathol Med 37:571–574PubMedGoogle Scholar
  8. Ikeda E, Hirose M, Kotobuki N, Shimaoka H, Tadokoro M, Maeda M, Hayashi Y, Kirita T, Ohgushi H (2006) Osteogenic differentiation of human dental papilla mesenchymal cells. Biochem Biophys Res Commun 342:1257–1262CrossRefPubMedGoogle Scholar
  9. Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A (2004) Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res 83:590–595CrossRefPubMedGoogle Scholar
  10. Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, Bunnell BA (2006) Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99:1285–1297CrossRefPubMedGoogle Scholar
  11. Jo YY, Lee HJ, Kook SY, Choung HW, Park JY, Chung JH, Choung YH, Kim ES, Yang HC, Choung PH (2007) Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng 13:767–773CrossRefPubMedGoogle Scholar
  12. Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Massironi SM, Pereira LV, Caplan AI, Cerruti HF (2006) Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 184:105–116CrossRefPubMedGoogle Scholar
  13. Laino G, d’Aquino R, Graziano A, Lanza V, Carinci F, Naro F, Pirozzi G, Papaccio G (2005) A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res 20:1394–1402CrossRefPubMedGoogle Scholar
  14. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100:5807–5812CrossRefPubMedGoogle Scholar
  15. Myginda T, Stiehler M, Baatrup A, Li H, Zou X, Flyvbjerg A, Kassem M, Bünger C (2007) Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials 28:1036–1047CrossRefGoogle Scholar
  16. Nosrat IV, Widenfalk J, Olson L, Nosrat CA (2001) Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol 238:120–132CrossRefPubMedGoogle Scholar
  17. Otaki S, Ueshima S, Shiraishi K, Sugiyama K, Hamada S, Yorimoto M, Matsuo O (2007) Mesenchymal progenitor cells in adult human dental pulp and their ability to form bone when transplanted into immunocompromised mice. Cell Biol Int 31:1191–1197CrossRefPubMedGoogle Scholar
  18. Papaccio G, Graziano A, d’Aquino R, Graziano MF, Pirozzi G, Menditti D, De Rosa A, Carinci F, Laino G (2006) Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. J Cell Physiol 208:319–325CrossRefPubMedGoogle Scholar
  19. Serakinci N, Graakjaer J, Kolvraa S (2008) Telomere stability and telomerase in mesenchymal stem cells. Biochimie 90:33–40CrossRefPubMedGoogle Scholar
  20. Shi S, Robey PG, Gronthos S (2001) Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone 29:532–539CrossRefPubMedGoogle Scholar
  21. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Shi S, Wang S (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE. doi:10.1371/journal.pone.0000079
  22. Struys T, Krage T, Martens W, Theunissen E, Moreels M, Lambrichts I (2007) Metallothionein: a possible new marker for human dental pulp stem cells. Eur Cells Mater 14:131Google Scholar
  23. Wu L, Wu Y, Lin Y, Jing W, Nie X, Qiao J, Liu L, Tang W, Tian W (2007) Osteogenic differentiation of adipose derived stem cells promoted by overexpression of osterix. Mol Cell Biochem 301:83–92CrossRefPubMedGoogle Scholar
  24. Yu J, Wang Y, Deng Z, Tang L, Li Y, Shi J, Jin Y (2007) Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell 99:465–474CrossRefPubMedGoogle Scholar
  25. Zhang W, Walboomers XF, Shi S, Fan M, Jansen JA (2006a) Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng 12:2813–2823CrossRefPubMedGoogle Scholar
  26. Zhang W, Walboomers XF, van Kuppevelt TH, Daamen WF, Bian Z, Jansen JA (2006b) The performance of human dental pulp stem cells on different three-dimensional scaffold materials. Biomaterials 27:5658–5668CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Erdal Karaöz
    • 1
  • Burcu Nur Doğan
    • 2
  • Ayça Aksoy
    • 1
  • Gülçin Gacar
    • 1
  • Serap Akyüz
    • 2
  • Selda Ayhan
    • 1
  • Zehra Seda Genç
    • 1
  • Sinan Yürüker
    • 3
  • Gökhan Duruksu
    • 1
  • Pınar Çetinalp Demircan
    • 1
  • Ayla Eker Sarıboyacı
    • 1
  1. 1.Stem Cell and Gene Therapy Research and Applied CenterKocaeli UniversityKocaeliTurkey
  2. 2.Department of Pedodontics, Faculty of DentistryUniversity of MarmaraIstanbulTurkey
  3. 3.Department of Histology and Embryology, Faculty of MedicineUniversity of HacettepeAnkaraTurkey

Personalised recommendations