Histochemistry and Cell Biology

, Volume 132, Issue 4, pp 435–445 | Cite as

Expression of glutamate receptor subunits in human cancers

  • Andrzej Stepulak
  • Hella Luksch
  • Christine Gebhardt
  • Ortrud Uckermann
  • Jenny Marzahn
  • Marco Sifringer
  • Wojciech Rzeski
  • Christian Staufner
  • Katja S. Brocke
  • Lechoslaw Turski
  • Chrysanthy Ikonomidou
Original Paper


Emerging evidence suggests a role for glutamate and its receptors in the biology of cancer. This study was designed to systematically analyze the expression of ionotropic and metabotropic glutamate receptor subunits in various human cancer cell lines, compare expression levels to those in human brain tissue and, using electrophysiological techniques, explore whether cancer cells respond to glutamate receptor agonists and antagonists. Expression analysis of glutamate receptor subunits NR1-NR3B, GluR1-GluR7, KA1, KA2 and mGluR1-mGluR8 was performed by means of RT-PCR in human rhabdomyosarcoma/medulloblastoma (TE671), neuroblastoma (SK-NA-S), thyroid carcinoma (FTC 238), lung carcinoma (SK-LU-1), astrocytoma (MOGGCCM), multiple myeloma (RPMI 8226), glioma (U87-MG and U343), lung carcinoma (A549), colon adenocarcinoma (HT 29), T cell leukemia cells (Jurkat E6.1), breast carcinoma (T47D) and colon adenocarcinoma (LS180). Analysis revealed that all glutamate receptor subunits were differentially expressed in the tumor cell lines. For the majority of tumors, expression levels of NR2B, GluR4, GluR6 and KA2 were lower compared to human brain tissue. Confocal imaging revealed that selected glutamate receptor subunit proteins were expressed in tumor cells. By means of patch-clamp analysis, it was shown that A549 and TE671 cells depolarized in response to application of glutamate agonists and that this effect was reversed by glutamate receptor antagonists. This study reveals that glutamate receptor subunits are differentially expressed in human tumor cell lines at the mRNA and the protein level, and that their expression is associated with the formation of functional channels. The potential role of glutamate receptor antagonists in cancer therapy is a feasible goal to be explored in clinical trials.


Glutamate receptor Cancer PCR Immunocytochemistry Electrophysiology 



The work was supported by Deutsche Forschungsgemeinschaft grant IK2/6-1.


  1. Abdul M, Hoosein N (2005) N-methyl-d-aspartate receptor in human prostate cancer. J Membr Biol 205:125–128PubMedCrossRefGoogle Scholar
  2. Arcella A, Carpinelli G, Battaglia G, D’Onofrio M, Santoro F, Ngomba RT, Bruno V, Casolini P, Giangaspero F, Nicoletti F (2005) Pharmacological blockade of group II metabotropic glutamate receptors reduces the growth of glioma cells in vivo. Neuro Oncol 7:236–245PubMedCrossRefGoogle Scholar
  3. Aronica E, Yankaya B, Jansen GH, Leenstra S, van Veelen CW, Gorter JA, Troost D (2001) Ionotropic and metabotropic glutamate receptor protein expression in glioneuronal tumours from patients with intractable epilepsy. Neuropathol Appl Neurobiol 27:223–237PubMedCrossRefGoogle Scholar
  4. Cavalheiro EA, Olney JW (2001) Glutamate antagonists: deadly liaisons with cancer. Proc Natl Acad Sci USA 98:5947–5948PubMedCrossRefGoogle Scholar
  5. Chang HJ, Yoo BC, Lim SB, Jeong SY, Kim WH, Park JG (2005) Metabotropic glutamate receptor 4 expression in colorectal carcinoma and its prognostic significance. Clin Cancer Res 11:3288–3295PubMedCrossRefGoogle Scholar
  6. Choi SW, Park SY, Hong SP, Pai H, Choi JY, Kim SG (2004) The expression of NMDA receptor 1 is associated with clinicopathological parameters and prognosis in the oral squamous cell carcinoma. J Oral Pathol Med 33:533–537PubMedCrossRefGoogle Scholar
  7. Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11:327–335PubMedCrossRefGoogle Scholar
  8. de Groot JF, Piao Y, Lu L, Fuller GN, Yung WK (2008) Knockdown of GluR1 expression by RNA interference inhibits glioma proliferation. J Neurooncol 88:121–133PubMedCrossRefGoogle Scholar
  9. Hayashi T, Umemori H, Mishina M, Yamamoto T (1999) The AMPA receptor interacts with and signals through the protein tyrosine kinase Lyn. Nature 397:72–76PubMedCrossRefGoogle Scholar
  10. Hinoi E, Takarada T, Ueshima T, Tsuchihashi Y, Yoneda Y (2004) Glutamate signaling in peripheral tissues. Eur J Biochem 271:1–13PubMedCrossRefGoogle Scholar
  11. Husi H, Ward MA, Choudhary JS, Blackstock WB, Grant SG (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 3:661–669PubMedCrossRefGoogle Scholar
  12. Iacovelli L, Arcella A, Battaglia G, Pazzaglia S, Aronica E, Spinsanti P, Caruso A, De Smaele E, Saran A, Gulino A, D’Onofrio M, Giangaspero F, Nicoletti F (2006) Pharmacological activation of mGlu4 metabotropic glutamate receptors inhibits the growth of medulloblastomas. J Neurosci 26:8388–8397PubMedCrossRefGoogle Scholar
  13. Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada N, Hagimura N, Okado H, Miwa A, Kurihara H, Nakazao Y, Tamura M, Sasaki T, Ozawa S (2002) Blockage of Ca(2+)-permeable AMPA receptor suppresses migration and induces apoptosis in human glioblastoma cells. Nat Med 8:971–978PubMedCrossRefGoogle Scholar
  14. Kalariti N, Pissimissis N, Koutsilieris M (2005) The glutamatergic system outside the CNS and in cancer biology. Expert Opin Investig Drugs 14:1487–1496PubMedCrossRefGoogle Scholar
  15. Kawahara Y, Ito K, Sun H, Kanazawa I, Kwak S (2003) Low editing efficiency of GluR2 mRNA is associated with a low relative abundance of ADAR2 mRNA in white matter of normal human brain. Eur J Neurosci 18:23–33PubMedCrossRefGoogle Scholar
  16. Keinanen K, Wisden W, Sommer B, Werner P, Herb A, Verdoorn TA, Sakmann B, Seeburg PH (1990) A family of AMPA-selective glutamate receptors. Science 249:556–560PubMedCrossRefGoogle Scholar
  17. Kew JN, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl) 179:4–29CrossRefGoogle Scholar
  18. Kim MS, Chang X, Nagpal JK, Yamashita K, Baek JH, Dasqupta S, Wu G, Osada M, Woo JH, Westra WH, Trink B, Ratovitski EA, Moon C, Sidrawsky D (2008) The N-methyl-d-aspartate receptor type 2A is frequently methylated in human colorectal carcinoma and suppresses cell growth. Oncogene 27:2045–2054PubMedCrossRefGoogle Scholar
  19. Lerma J, Paternain AV, Rodriguez-Moreno A, López-García JC (2001) Molecular physiology of kainate receptors. Physiol Rev 81:971–998PubMedGoogle Scholar
  20. Liu JW, Kim MS, Nagpal J, Yamashita K, Poeta L, Chang X, Lee J, Park HL, Jeronimo C, Westra WH, Mori M, Moon C, Trink B, Sidransky D (2007) Quantitative hypermethylation of NMDAR2B in human gastric cancer. Int J Cancer 121:1994–2000PubMedCrossRefGoogle Scholar
  21. Maas S, Patt S, Schrey M, Rich A (2001) Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc Natl Acad Sci USA 98:14687–14692PubMedCrossRefGoogle Scholar
  22. Madden DR (2002) The structure and function of glutamate receptor ion channels. Nat Rev Neurosci 3:91–101PubMedCrossRefGoogle Scholar
  23. Marin YE, Chen S (2004) Involvement of metabotropic glutamate receptor 1, a G protein coupled receptor, in melanoma development. J Mol Med 82:735–749PubMedCrossRefGoogle Scholar
  24. Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N, Nakanishi S (1993) Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for l-2-amino-4-phosphonobutyrate. J Biol Chem 268:11868–11873PubMedGoogle Scholar
  25. Nicoletti F, Arcella A, Iacovelli L, Battaglia G, Giangaspero F, Melchiorri D (2007) Metabotropic glutamate receptors: new targets for the control of tumor growth? Trends Pharmacol Sci 28:206–213PubMedCrossRefGoogle Scholar
  26. Nishi M, Hinds H, Lu HP, Kawara M, Hayashi Y (2001) Motoneuron-specific expression of NR3B, a novel NMDA-type glutamate receptor subunit that works in a dominant-negative manner. J Neurosci 21:RC185PubMedGoogle Scholar
  27. Pacheco R, Gallart T, Lluis C, Franco R (2007) Role of glutamate on T cell mediated immunity. J Neuroimmunol 185:9–19PubMedCrossRefGoogle Scholar
  28. Palmer CL, Cotton L, Henley JM (2005) The molecular pharmacology and cell biology of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Pharmacol Rev 57:253–257PubMedCrossRefGoogle Scholar
  29. Park SY, Lee SA, Han IH, Yoo BC, Lee SH, Park JY, Cha IH, Kim J, Choi SW (2007) Clinical significance of metabotropic glutamate receptor 5 expression in oral squamous cell carcinoma. Oncol Rep 17:81–87PubMedGoogle Scholar
  30. Pollock PM, Cohen-Solal K, Sood R, Namkoong J, Martino JJ, Koganti A, Zhu H, Robbins C, Makalowska I, Shin SS, Marin Y, Roberts KG, Yudt LM, Chen A, Cheng J, Incao A, Pinkett HW, Graham CL, Dunn K, Crespo-Carbone SM, Mackason KR, Ryan KB, Sinsimer D, Goydos J, Reuhl KR, Eckhaus M, Meltzer PS, Pavan WJ, Trent JM, Chen S (2003) Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia. Nat Genet 34:108–112PubMedCrossRefGoogle Scholar
  31. Popescu G (2005) Mechanism-based targeting of NMDA receptor functions. Cell Mol Life Sci 62:2100–2101PubMedCrossRefGoogle Scholar
  32. Rzeski W, Turski L, Ikonomidou C (2001) Glutamate antagonists limit tumor growth. Proc Natl Acad Sci USA 98:6372–6377PubMedCrossRefGoogle Scholar
  33. Shin SS, Martino JJ, Chen S (2008) Metabotropic glutamate receptors (mGlus) and cellular transformation. Neuropharmacology 55:396–402PubMedCrossRefGoogle Scholar
  34. Stepulak A, Sifringer M, Rzeski W, Endesfelder S, Gratopp A, Pohl EE, Bittigau P, Felderhoff-Mueser U, Kaindl AM, Bührer C, Hansen HH, Stryjecka-Zimmer M, Turski L, Ikonomidou C (2005) NMDA antagonist inhibits the extracellular signal-regulated kinase pathway and suppresses cancer growth. Proc Natl Acad Sci USA 102:15605–15610PubMedCrossRefGoogle Scholar
  35. Stepulak A, Sifringer M, Rzeski W, Brocke K, Gratopp A, Pohl EE, Turski L, Ikonomidou C (2007) AMPA antagonists inhibit the extracellular signal regulated kinase pathway and suppress lung cancer growth. Cancer Biol Ther 6:1908–1915PubMedCrossRefGoogle Scholar
  36. Takano T, Lin JH, Arcuino G, Gao O, Yang J, Nedergaard M (2001) Glutamate release promotes growth of malignant gliomas. Nat Med 7:1010–1015PubMedCrossRefGoogle Scholar
  37. Takeda M, Haga M, Yamada H, Kinoshita M, Otsuka M, Tsuboi S, Moriyama Y (2000) Ionotropic glutamate receptors expressed in human retinoblastoma Y79 cells. Neurosci Lett 294:97–100PubMedCrossRefGoogle Scholar
  38. Wang Y, Durkin JP (1995) Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, but not N-methyl-d-aspartate, activates mitogen-activated protein kinase through G-protein beta gamma subunits in rat cortical neurons. J Biol Chem 270:22783–22787PubMedCrossRefGoogle Scholar
  39. Wang Y, Small DL, Stanimirovic DB, Mortey P, Durkin JP (1997) AMPA receptor-mediated regulation of a Gi-protein in cortical neurons. Nature 389:502–504PubMedCrossRefGoogle Scholar
  40. Watanabe K, Kanno T, Oshima T, Miwa H, Tashiro G, Nishizaki T (2008) The NMDA receptor NR2A subunit regulates proliferation of MKN45 human gastric cancer cells. Biochem Biophys Res Commun 367:487–490PubMedCrossRefGoogle Scholar
  41. Waxman EA, Lynch DR (2005) N-methyl-d-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist 11:37–49PubMedCrossRefGoogle Scholar
  42. Yoo BC, Jeon E, Hong SH, Shin YK, Chang HJ, Park JG (2004) Metabotropic glutamate receptor 4-mediated 5-fluorouracil resistance in a human colon cancer cell line. Clin Cancer Res 10:4176–4184PubMedCrossRefGoogle Scholar
  43. Yoshioka A, Ikegaki N, Williams M, Pleasure D (1996) Expression of N-methyl-d-aspartate (NMDA) and non-NMDA glutamate receptor genes in neuroblastoma, medulloblastoma, and other cells lines. J Neurosci Res 46:164–178PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Andrzej Stepulak
    • 1
    • 2
  • Hella Luksch
    • 2
  • Christine Gebhardt
    • 3
  • Ortrud Uckermann
    • 2
  • Jenny Marzahn
    • 2
  • Marco Sifringer
    • 4
  • Wojciech Rzeski
    • 5
    • 6
  • Christian Staufner
    • 2
  • Katja S. Brocke
    • 2
  • Lechoslaw Turski
    • 7
  • Chrysanthy Ikonomidou
    • 2
    • 8
    • 9
  1. 1.Department of Biochemistry and Molecular BiologyMedical University of LublinLublinPoland
  2. 2.Department of Pediatric Neurology, Medical Faculty Carl Gustav Carus, Children’s HospitalUniversity of Technology DresdenDresdenGermany
  3. 3.Institute of Neurophysiology, CharitéHumboldt UniversityBerlinGermany
  4. 4.Department of Anaesthesiology and Intensive Care Medicine, Charité, Campus Virchow KlinikumHumboldt University BerlinBerlinGermany
  5. 5.Department of Virology and Immunology, Institute of Microbiology and BiotechnologyMaria Curie-Sklodowska UniversityLublinPoland
  6. 6.Department of Medical BiologyInstitute of Agricultural MedicineLublinPoland
  7. 7.Solvay Pharmaceuticals Research LaboratoriesWeespThe Netherlands
  8. 8.Department of Neurology & Waisman CenterUniversity of WisconsinMadisonUSA
  9. 9.Department of Neurology, H6/574 Clinical Science CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA

Personalised recommendations