Advertisement

Histochemistry and Cell Biology

, Volume 132, Issue 1, pp 39–46 | Cite as

Intracellular dynamics of topoisomerase I inhibitor, CPT-11, by slit-scanning confocal Raman microscopy

  • Yoshinori Harada
  • Ping Dai
  • Yoshihisa Yamaoka
  • Mitsugu Ogawa
  • Hideo Tanaka
  • Kazuto Nosaka
  • Kenichi Akaji
  • Tetsuro Takamatsu
Original Paper

Abstract

Most molecular imaging technologies require exogenous probes and may have some influence on the intracellular dynamics of target molecules. In contrast, Raman scattering light measurement can identify biomolecules in their innate state without application of staining methods. Our aim was to analyze intracellular dynamics of topoisomerase I inhibitor, CPT-11, by using slit-scanning confocal Raman microscopy, which can take Raman images with high temporal and spatial resolution. We could acquire images of the intracellular distribution of CPT-11 and its metabolite SN-38 within several minutes without use of any exogenous tags. Change of subcellular drug localization after treatment could be assessed by Raman imaging. We also showed intracellular conversion from CPT-11 to SN-38 using Raman spectra. The study shows the feasibility of using slit-scanning confocal Raman microscopy for the non-labeling evaluation of the intracellular dynamics of CPT-11 with high temporal and spatial resolution. We conclude that Raman spectromicroscopic imaging is useful for pharmacokinetic studies of anticancer drugs in living cells.

Keywords

Slit-scanning Raman microscopy Molecular imaging Non-labeling method Anticancer-drug 

Notes

Acknowledgments

We thank Dr. Katsumasa Fujita and Dr. Keisaku Hamada of Osaka University for their helpful discussion, and Dr. Taisuke Ota and Dr. Minoru Kobayashi of Nanophoton Corporation for their useful advice. Grant-in-Aid (C-20500396) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Conflict of interest statement

None.

Supplementary material

418_2009_594_MOESM1_ESM.pdf (23 kb)
Supplementary material 1 (PDF 23 kb)

References

  1. Bates SE, Medina-Pérez WY, Kohlhagen G, Antony S, Nadjem T, Robey RW, Pommier Y (2004) ABCG2 mediates differential resistance to SN-38 (7-ethyl-10-hydroxycamptothecin) and homocamptothecins. J Pharmacol Exp Ther 310:836–842PubMedCrossRefGoogle Scholar
  2. Belhoussinea R, Morjania H, Millota JM, Sharonova S, Manfaita M (1998) Confocal scanning microspectrofluorometry reveals specific anthracyline accumulation in cytoplasmic organelles of multidrug-resistant cancer cells. J Histochem Cytochem 46:1369–1376Google Scholar
  3. Carey PR (1982) Protein conformation from Raman and Resonance Raman spectra. In: Carey PR (ed) Biochemical applications of Raman and resonance Raman spectroscopies. Academic Press, New York, pp 71–98Google Scholar
  4. Chourpa I, Beljebbar A, Sockalingum GD, Riou JF, Manfait M (1997) Structure-activity relation in camptothecin antitumor drugs: why a detailed molecular characterisation of their lactone and carboxylate forms by Raman and SERS spectroscopies? Biochim Biophys Acta 1334:349–360PubMedGoogle Scholar
  5. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95:15665–15670PubMedCrossRefGoogle Scholar
  6. Failloux N, Bonnet I, Baron MH, Perrier E (2003) Quantitative analysis of vitamin A degradation by Raman spectroscopy. Appl Spectrosc 57:1117–1122PubMedCrossRefGoogle Scholar
  7. Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C, Tsai JC, Kang JX, Xie XS (2008) Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322:1857–1861PubMedCrossRefGoogle Scholar
  8. Hamada K, Fujita K, Smith NI, Kobayashi M, Inouye Y, Kawata S (2008) Raman microscopy for dynamic molecular imaging of living cells. J Biomed Opt 13:044027PubMedCrossRefGoogle Scholar
  9. Harada Y, Ota T, Dai P, Yamaoka Y, Hamada K, Fujita K, Takamatsu T (2008) Imaging of anticancer agent distribution by a slit-scanning Raman microscope. Proc SPIE 6853:685308–685308-5Google Scholar
  10. Hu ZP, Yang XX, Chen X, Chan E, Duan W, Zhou SF (2007) Simultaneous determination of irinotecan (CPT-11) and SN-38 in tissue culture media and cancer cells by high performance liquid chromatography: application to cellular metabolism and accumulation studies. J Chromatogr B Analyt Technol Biomed Life Sci 850:575–580PubMedCrossRefGoogle Scholar
  11. Jolliffe T (2002) Principal component analysis. Springer Series in statistics, 2nd edn. Springer Verlag, New York, pp 1–228Google Scholar
  12. Kawata S, Arimoto R, Nakamura O (1991) Three-dimensional optical-transfer-function analysis for a laser-scan fluorescence microscope with an extended detector. J Opt Soc Am A8:171–175CrossRefGoogle Scholar
  13. Ling J, Weitman SD, Miller MA, Moore RV, Bovik AC (2002) Direct Raman imaging techniques for study of the subcellular distribution of a drug. Appl Opt 41:6006–6017PubMedCrossRefGoogle Scholar
  14. Molckovsky A, Song LM, Shim MG, Marcon NE, Wilson BC (2003) Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps. Gastrointest Endosc 57:396–402PubMedCrossRefGoogle Scholar
  15. Ogawa M, Harada Y, Yamaoka Y, Fujita K, Yaku H, Takamatsu T (2009) Label-free biochemical imaging of heart tissue with high-speed spontaneous Raman microscopy. Biochem Biophys Res Commun 382:370–374PubMedCrossRefGoogle Scholar
  16. Oshima Y, Furihata C, Sato H (2008) Development of a direct Raman imaging system for rapid diagnosis of malignant tumor. Proc SPIE 6859:685905–685905-5Google Scholar
  17. Oyama H, Nagane M, Shibui S, Nomura K, Mukai K (1992) Intracellular distribution of CPT-11 in CPT-11-resistant cells with confocal laser scanning microscopy. Jpn J Clin Oncol 22:331–334PubMedGoogle Scholar
  18. Pawluczyk O, Andrew S, Nogas P, Roy A, Pawluczyk R (2009) High-performance dispersive Raman and absorption spectroscopy as tools for drug identification. Proc SPIE 7182:71820MCrossRefGoogle Scholar
  19. Pelton JT, McLean LR (2000) Spectroscopic methods for analysis of protein secondary structure. Anal Biochem 277:167–176PubMedCrossRefGoogle Scholar
  20. Ramanujam N, Mitchell MF, Mahadevan A, Thomsen S, Malpica A, Wright T, Atkinson N, Richards-Kortum R (1996) Development of a multivariate statistical algorithm to analyze human cervical tissue fluorescence spectra acquired in vivo. Lasers Surg Med 19:46–62PubMedCrossRefGoogle Scholar
  21. Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2:123–131PubMedCrossRefGoogle Scholar
  22. Sato A, Gao Y, Kitagawa T, Mizutani Y (2007) Primary protein response after ligand photodissociation in carbonmonoxy myoglobin. Proc Natl Acad Sci USA 104:9627–9632PubMedCrossRefGoogle Scholar
  23. Sharma KD, Loehr TM, Sanders-Loehr J, Husain M, Davidson VL (1988) Resonance Raman spectroscopy of amicyanin, a blue copper protein from Paracoccus denitrificans. J Biol Chem 263:3303–3306PubMedGoogle Scholar
  24. Shetty G, Kendall C, Shepherd N, Stone N, Barr H (2006) Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. Br J Cancer 94:1460–1464PubMedCrossRefGoogle Scholar
  25. Zhang G, Moore DJ, Sloan KB, Flach CR, Mendelsohn R (2007) Imaging the prodrug-to-drug transformation of a 5-fluorouracil derivative in skin by confocal Raman microscopy. J Invest Dermatol 127:1205–1209PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Yoshinori Harada
    • 1
  • Ping Dai
    • 1
  • Yoshihisa Yamaoka
    • 1
  • Mitsugu Ogawa
    • 1
  • Hideo Tanaka
    • 1
  • Kazuto Nosaka
    • 2
  • Kenichi Akaji
    • 2
  • Tetsuro Takamatsu
    • 1
  1. 1.Department of Pathology and Cell Regulation, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
  2. 2.Department of Chemistry, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan

Personalised recommendations