Advertisement

Histochemistry and Cell Biology

, Volume 131, Issue 3, pp 411–424 | Cite as

Knockdown of tight junction protein claudin-2 prevents bile canalicular formation in WIF-B9 cells

  • Seiichi Son
  • Takashi Kojima
  • Catherine Decaens
  • Hiroshi Yamaguchi
  • Tatsuya Ito
  • Masafumi Imamura
  • Masaki Murata
  • Satoshi Tanaka
  • Hideki Chiba
  • Koichi Hirata
  • Norimasa Sawada
Original Paper

Abstract

The polarization of hepatocytes involves formation of functionally distinct sinusoidal (basolateral) and bile canalicular (apical) plasma membrane domains that are separated by tight junctions. Although various molecular mechanisms and signaling cascades including polarity complex proteins may contribute to bile canalicular formation in hepatocytes, the role of tight junction proteins in bile canalicular formation remains unclear. To investigate the role of the integral tight junction protein claudin-2 in bile canalicular formation, we depleted claudin-2 expression by siRNA in the polarized hepatic cell line WIF-B9 after treatment with or without phenobarbital. When WIF-B9 cells were treated with phenobarbital, claudin-2 expression and tight junction strands were markedly increased together with induction of canalicular formation with a biliary secretion function. Knockdown of claudin-2 prevented bile canalicular formation after treatment with or without phenobarbital. Furthermore, knockdown of claudin-2 caused a change from a hepatic polarized phenotype to a simple polarized phenotype, together with upregulation of pLKB1, pMAPK, pAkt and pp38 MAPK, but not pMLC, PTEN or cdc42, and an increase of intracellular vacuoles, which were present before bile canalicular formation. These results suggest that claudin-2 may affect not only the bile canalicular seal but also bile canalicular formation.

Keywords

Hepatic cell polarity Bile canaliculi Tight junctions siRNA Phenobarbital Signal transduction 

Notes

Acknowledgments

We thank Dr. Doris Cassio (Univ Paris-Sud) for the WIF-B9 cells and Ms. E. Suzuki (Sapporo Medical University) for technical support. This work was supported by Grants-in-Aid from the National Project”Knowledge Cluster Initiative” (2nd stage, “Sapporo Biocluster Bio-S”), the Ministry of Education, Culture, Sports Science, and Technology, and the Ministry of Health, Labour and Welfare of Japan, the Akiyama Foundation, Japan Science and Technology Agency and the Long-Range Research Initiative Project of the Japan Chemical Industry Association.

References

  1. Alexandre MD, Lu Q, Chen YH (2005) Overexpression of claudin-7 decreases the paracellular Cl conductance and increases the paracellular Na+ conductance in LLC-PK1 cells. J Cell Sci 118:2683–2693PubMedCrossRefGoogle Scholar
  2. Amasheh S, Meiri N, Gitter AH, Schöneberg T, Mankertz J, Schulzke JD, Fromm M (2002) Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 115:4969–4976PubMedCrossRefGoogle Scholar
  3. Baas AF, Kuipers J, van der Wel NN, Batlle E, Koerten HK, Peters PJ, Clevers HC (2004) Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 116:457–466PubMedCrossRefGoogle Scholar
  4. Bagnat M, Cheung ID, Mostov KE, Stainier DYR (2007) Genetic control of single lumen formation in the zebrafish gut. Nat Cell Biol 9:954–960PubMedCrossRefGoogle Scholar
  5. Braiterman LT, Heffernan S, Nyasae L, Johns D, See AP, Yutzy R, McNickle A, Herman M, Sharma A, Naik UP, Hubbard AL (2008) JAM-A is both essential and inhibitory to development of hepatic polarity in WIF-B cells. Am J Physiol Gastrointest Liver Physiol 294:G576–G588PubMedCrossRefGoogle Scholar
  6. Bravo P, Bender V, Cassio D (1998) Efficient in vitro vectorial transport of a fluorescent conjugated bile acid analogue by polarized hepatic hybrid WIF-B and WIF-B9 cells. Hepatology 27:576–583PubMedCrossRefGoogle Scholar
  7. Cassio D, Hamon-Benais C, Guérin M, Lecoq O (1991) Hybrid cell lines constitute a potential reservoir of polarized cells: isolation and study of highly differentiated hepatoma-derived hybrid cells able to form functional bile canaliculi in vitro. J Cell Biol 115:1397–1408PubMedCrossRefGoogle Scholar
  8. Cohen D, Brennwald PJ, Rodriguez-Boulan E, Müsch A (2004) Mammalian PAR-1 determines epithelial lumen polarity by organizing the microtubule cytoskeleton. J Cell Biol 164:717–727PubMedCrossRefGoogle Scholar
  9. Cohen D, Tian Y, Müsch A (2007) Par1b promotes hepatic-type lumen polarity in Madin Darby canine kidney cells via myosin II- and E-cadherin-dependent signaling. Mol Biol Cell 18:2203–2215PubMedCrossRefGoogle Scholar
  10. Colegio OR, Van Itallie CM, McCrea HJ, Rahner C, Anderson JM (2002) Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol 283:C142–C147PubMedGoogle Scholar
  11. Decaens C, Rodriguez P, Bouchaud C, Cassio D (1996) Establishment of hepatic cell polarity in the rat hepatoma-human fibroblast hybrid WIF-B9. A biphasic phenomenon going from a simple epithelial polarized phenotype to an hepatic polarized one. J Cell Sci 109:1623–1635PubMedGoogle Scholar
  12. Ebnet K, Suzuki A, Horikoshi Y, Hirose T, Meyer zu Brickwedde MK, Ohno S, Vestweber D (2001) The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J 20:3738–3748PubMedCrossRefGoogle Scholar
  13. Fawcett D (1994) A Textbook of Histology. In: Bloom W, Fawcett DW (eds) Chapman and Hall, London, pp 57–81Google Scholar
  14. Fechner H, Haack A, Wang H, Wang X, Eizema K, Pauschinger M, Schoemaker RG, van Veghel R, Houtsmuller AB, Schultheiss HP, Lamers JMJ, Poller W (1999) Expression of coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Ther 6:1520–1535PubMedCrossRefGoogle Scholar
  15. Gumbiner BM (1993) Breaking through the tight junction barrier. J Cell Biol 123:1631–1633PubMedCrossRefGoogle Scholar
  16. Herrema H, Czajkowska D, Théard D, van der Wouden JM, Kalicharan D, Zolghadr B, Hoekstra D, van Ijzendoorn SCD (2006) Rho kinase, myosin-II, and p42/44 MAPK control extracellular matrix-mediated apical bile canalicular lumen morphogenesis in HepG2 cells. Mol Biol Cell 17:3291–3303PubMedCrossRefGoogle Scholar
  17. Hou J, Gomes AS, Paul DL, Goodenough DA (2006) Study of claudin function by RNA interference. J Biol Chem 281:36117–36123PubMedCrossRefGoogle Scholar
  18. Ihrke G, Neufeld EB, Meads T, Shanks MR, Cassio D, Laurent M, Schroer TA, Pagano RE, Hubbard AL (1993) WIF-B cells: an in vitro model for studies of hepatocyte polarity. J Cell Biol 123:1761–1775PubMedCrossRefGoogle Scholar
  19. Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171:939–945PubMedCrossRefGoogle Scholar
  20. Imamura M, Kojima T, Lan M, Son S, Murata M, Osanai M, Chiba H, Hirata K, Sawada N (2007) Oncostatin M induces upregulation of claudin-2 in rodent hepatocytes coinciding with changes in morphology and function of tight junctions. Exp Cell Res 313:1951–1962PubMedCrossRefGoogle Scholar
  21. Itoh M, Sasaki H, Furuse M, Ozaki H, Kita T, Tsukita S (2001) Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol 154:491–497PubMedCrossRefGoogle Scholar
  22. Kojima T, Takano K, Yamamoto T, Murata M, Son S, Imamura M, Yamaguchi H, Osanai M, Chiba H, Himi T, Sawada N (2008) Transforming growth factor-β induces epithelial to mesenchymal transition by down-regulation of claudin-1 expression and the fence function in adult rat hepatocytes. Liver Int 28:534–545PubMedGoogle Scholar
  23. Kojima T, Yamamoto M, Mochizuki C, Mitaka T, Sawada N, Mochizuki Y (1997) Different changes in expression and function of connexin 26 and connexin 32 during DNA synthesis and redifferentiation in primary rat hepatocytes using a DMSO culture system. Hepatology 26:585–597PubMedCrossRefGoogle Scholar
  24. Kojima T, Yamamoto T, Murata M, Chiba H, Kokai Y, Sawada N (2003) Regulation of the blood-billiary barrier: interaction between gap and tight junctions in hepatocytes. Med Electron Microsc 36:157–164PubMedCrossRefGoogle Scholar
  25. Konopka G, Tekiela J, Iverson M, Wells C, Duncan SA (2007) Junctional adhesion molecule-A is critical for the formation of pseudocanaliculi and modulates E-cadherin expression in hepatic cells. J Biol Chem 282:28137–28148PubMedCrossRefGoogle Scholar
  26. Kubitz R, Sütfels G, Kühlkamp T, Kölling R, Häussinger D (2004) Trafficking of the bile salt export pump from the Golgi to the canalicular membrane is regulated by the p38 MAP kinase. Gastroenterology 126:541–553PubMedCrossRefGoogle Scholar
  27. Mirouse V, Swick LL, Kazgan N, St Johnston D, Brenman JE (2007) LKB1 and AMPK maintain epithelial cell polarity under energetic stress. J Cell Biol 177:387–392PubMedCrossRefGoogle Scholar
  28. Misra S, Ujházy P, Gatmaitan Z, Varticovski L, Arias IM (1998) The role of phosphoinositide 3-kinase in taurocholate-induced trafficking of ATP-dependent canalicular transporters in rat liver. J Biol Chem 273:26638–26644PubMedCrossRefGoogle Scholar
  29. Murata M, Kojima T, Yamamoto T, Go M, Takano K, Osanai M, Chiba H, Sawada N (2005) Down-regulation of survival signaling through MAPK and Akt in occludin-deficient mouse hepatocytes in vitro. Exp Cell Res 310:140–151PubMedCrossRefGoogle Scholar
  30. Okuda H, Sorrentino D, Alpini G, Tavoloni N, Jones MJ, Kiang CL, Berk PD (1988) Bile acid secretion and pool size during phenobarbital induced hypercholeresis. Proc Soc Exp Biol Med 187:202–208PubMedGoogle Scholar
  31. Rahner C, Mitic LL, Anderson JM (2001) Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology 120:411–422PubMedCrossRefGoogle Scholar
  32. Sai Y, Nies AT, Arias IM (1999) Bile acid secretion and direct targeting of mdr1-green fluorescent protein from Golgi to the canalicular membrane in polarized WIF-B cells. J Cell Sci 112:4535–4545PubMedGoogle Scholar
  33. Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11:4131–4142PubMedGoogle Scholar
  34. Sawada N, Murata M, Kikuchi K, Osanai M, Tobioka H, Kojima T, Chiba H (2003) Tight junctions and human diseases. Med Electron Microsc 36:147–156PubMedCrossRefGoogle Scholar
  35. Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 286:C1213–C1228PubMedCrossRefGoogle Scholar
  36. Sellem C, Cassio D, Weiss MC (1981) No extinction of tyrosine aminotransferase inducibility in rat hepatoma-human fibroblast hybrids containing the human X chromosome. Cytogenet Cell Genet 30:47–49PubMedCrossRefGoogle Scholar
  37. Shanks MR, Cassio D, Lecoq O, Hubbard AL (1994) An improved polarized rat hepatoma hybrid cell line. Generation and comparison with its hepatoma relatives and hepatocytes in vivo. J Cell Sci 107:813–825PubMedGoogle Scholar
  38. Théard D, Steiner M, Kalicharan D, Hoekstra D, van Ijzendoorn SCD (2007) Cell polarity development and protein trafficking in hepatocytes lacking E-cadherin/β-catenin-based adherens junctions. Mol Biol Cell 18:2313–2321PubMedCrossRefGoogle Scholar
  39. Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285–293PubMedCrossRefGoogle Scholar
  40. Van Itallie CM, Anderson JM (2006) Claudins and epithelial paracellular transport. Ann Rev Physiol 68:403–429CrossRefGoogle Scholar
  41. Wakabayashi Y, Dutt P, Lippincott-Schwartz J, Arias IM (2005) Rab11a and myosin Vb are required for bile canalicular formation in WIF-B9 cells. Proc Natl Acad Sci USA 102:15087–15092PubMedCrossRefGoogle Scholar
  42. Wilcox ER, Burton QL, Naz S, Riazuddin S, Smith TN, Ploplis B, Belyantseva I, Ben-Yosef T, Liburd NA, Morell RJ, Kachar B, Wu DK, Griffith AJ, Riazuddin S, Friedman TB (2001) Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 104:165–172PubMedCrossRefGoogle Scholar
  43. Xie Z, Dong Y, Zhang M, Cui MZ, Cohen RA, Riek U, Neumann D, Schlattner U, Zou MH (2006) Activation of protein kinase C ζ by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells. J Biol Chem 281:6366–6375PubMedCrossRefGoogle Scholar
  44. Yamamoto T, Kojima T, Murata M, Takano K, Go M, Hatakeyama N, Chiba H, Sawada N (2005) p38 MAP-kinase regulates function of gap and tight junctions during regeneration of rat hepatocytes. J Hepatol 42:707–718PubMedCrossRefGoogle Scholar
  45. Zhang L, Li J, Young LH, Caplan MJ (2006) AMP-activated protein kinase regulates the assembly of epithelial tight junctions. Proc Natl Acad Sci USA 103:17272–17277PubMedCrossRefGoogle Scholar
  46. Zheng B, Cantley LC (2007) Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase. Proc Natl Acad Sci USA 104:819–822PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Seiichi Son
    • 1
    • 2
  • Takashi Kojima
    • 2
  • Catherine Decaens
    • 3
    • 4
  • Hiroshi Yamaguchi
    • 1
    • 2
  • Tatsuya Ito
    • 1
    • 2
  • Masafumi Imamura
    • 1
    • 2
  • Masaki Murata
    • 2
  • Satoshi Tanaka
    • 2
  • Hideki Chiba
    • 2
  • Koichi Hirata
    • 1
  • Norimasa Sawada
    • 2
  1. 1.Departments of SurgerySapporo Medical University School of MedicineSapporoJapan
  2. 2.Departments of PathologySapporo Medical University School of MedicineSapporoJapan
  3. 3.INSERMOrsayFrance
  4. 4.Univ Paris-SudParisFrance

Personalised recommendations