Histochemistry and Cell Biology

, Volume 130, Issue 2, pp 329–338 | Cite as

Tracking of human cells in mice

  • Wiebke Schormann
  • Friedrich J. Hammersen
  • Marc Brulport
  • Matthias Hermes
  • Alexander Bauer
  • Claudia Rudolph
  • Markus Schug
  • Thomas Lehmann
  • Andreas Nussler
  • Hendrik Ungefroren
  • James Hutchinson
  • Fred Fändrich
  • Jörg Petersen
  • Karsten Wursthorn
  • Martin R. Burda
  • Oliver Brüstle
  • Kannan Krishnamurthi
  • Marc von Mach
  • Jan G. Hengstler
Original Paper

Abstract

Tracking and tracing of transplanted cells in mice is required in many fields of research. Examples are transplantation of stem cells into organs of mice to study their differentiation capacity and injection of tumor cells to examine metastatic behavior. In the present study we tested the lipid dye CM-DiI and red fluorescent nanoparticles Qdot655 for their applicability in tagging and tracing of human cells in mice. Labeling of different cell types, including MCF-7 human breast cancer cells, human cord blood derived cells, human NeoHep cells and human hepatopancreatic precursor cells, is technically easy and did not compromise further cell culture. After transplantation of CM-DiI or Qdot655 marked cells, red fluorescent structures could be detected already in unprocessed paraffin slices of the studied organs, namely liver, lung, pancreas, kidney, spleen and bone marrow. Next, we examined whether the red fluorescent structures represent the transplanted human cells. For this purpose, we established an in situ hybridization (ISH) technique that allows clear-cut differentiation between human and murine nuclei, based on simultaneous hybridization with human alu and mouse major satellite (mms) probes. We observed a high degree of coincidence between CM-DiI-marked cells and alu positive nuclei. However, also some mms positive cells contained CM-DiI, suggesting phagocytosis of the transplanted CM-DiI-marked cells. The degree of such CM-DiI-positive mouse cells depended on the cell type and route of administration. From a technical point of view it was important that CM-DiI-positive structures in paraffin slices remained fluorescent also after ISH. In contrast, Qdot655 positive structures faded during further staining procedures. In conclusion, marking of cells with CM-DiI or Qdot655 prior to transplantation facilitates recovery of human cells, since a high fraction of positive structures in the host’s tissue originate from the transplanted cells. However, CM-DiI or Qdot655 positive staining of individual cells in transplanted tissues is not sufficient to prove their human origin. Additional procedures, such as ISH with alu-probes, are essential, when characterizing individual cells.

Keywords

Stem cell Alu probe In situ hybridization Mouse major satellite CM-DiI Qdot655 Hepatopancreatic precursor cells MCF7 

Supplementary material

418_2008_428_MOESM1_ESM.tif (2.9 mb)
Electronic supplementary material (TIF 37 kb)
418_2008_428_MOESM2_ESM.doc (37 kb)
Supplemental Table 1 (DOC 254 kb)

References

  1. Andrade W, Seabrook TJ, Johnston MG, Hay JB (1996) The use of the lipophilic fluorochrome CM-DiI for tracking the migration of lymphocytes. J Immunol Methods 194:181–189PubMedCrossRefGoogle Scholar
  2. Aurich I, Mueller LP, Aurich H, Luetzkendorf J, Tisljar K, Dollinger M, Schormann W, Walldorf J, Hengstler J, Fleig WE, Christ B (2007) Functional integration of human mesenchymal stem cell-derived hepatocytes into mouse livers. Gut 56:405–415PubMedCrossRefGoogle Scholar
  3. Beerheide W, von Mach MA, Ringel M, Fleckenstein C, Schumann S, Renzing N, Hildebrandt A, Brenner W, Jensen O, Gebhard S, Reifenberg K, Bender J, Oesch F, Hengstler JG (2002) Downregulation of beta2-microglobulin in human cord blood somatic stem cells after transplantation into livers of SCID-mice: an escape mechanism of stem cells? Biochem Biophys Res Commun 294:1052–1063PubMedCrossRefGoogle Scholar
  4. Brulport M, Schormann W, Bauer A, Hermes M, Elsner C, Hammersen FJ, Beerheide W, Spitkovsky D, Härtig W, Nussler A, Horn LC, Edelmann J, Pelz-Ackermann O, Petersen J, Kamprad M, von Mach M, Lupp A, Zulewski H, Hengstler JG (2007) Fate of extrahepatic human stem and precursor cells after transplantation into mouse livers. Hepatology 46:861–870PubMedCrossRefGoogle Scholar
  5. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572PubMedCrossRefGoogle Scholar
  6. Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46PubMedCrossRefGoogle Scholar
  7. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem 101:9463–9475Google Scholar
  8. Eberhardt M, Salmon P, von Mach MA, Hengstler JG, Brulport M, Linscheid P, Seboek D, Oberholzer J, Barbero A, Martin I, Muller B, Trono D, Zulewski H (2006) Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets. Biochem Biophys Res Commun 345:1167–1176PubMedCrossRefGoogle Scholar
  9. Eger K, Hermes M, Uhlemann K, Rodewald S, Ortwein J, Brulport M, Bauer A, Schormann W, Lupatsch F, Schiffer I, Heimerdinger C, Gebhard S, Spangenberg C, Pravitt D, Trost T, Zabel B, Tanner B, Krugel U, Franke H, Illes P, Madaj-Sterba P, Bockamp EO, Beckers T, Hengstler JG (2004) 4-Epidoxycycline: an alternative to doxycycline to control gene expression in conditional mouse models. Biochem Biophys Res Commun 323:979–986PubMedCrossRefGoogle Scholar
  10. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458PubMedCrossRefGoogle Scholar
  11. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374PubMedCrossRefGoogle Scholar
  12. Garon EB, Marcu L, Luong Q, Tcherniantchouk O, Crooks GM, Koeffler HP (2007) Quantum dot labeling and tracking of human leukemic, bone marrow and cord blood cells. Leuk Res 31:643–651PubMedCrossRefGoogle Scholar
  13. Hausherr CK, Schiffer IB, Gebhard S, Banic A, Tanner B, Kolbl H, Thoenes E, Beckers T, Spangenberg C, Prawitt D, Trost T, Zabel B, Oesch F, Hermes M, Hengstler JG (2006) Dephosphorylation of p-ERK1/2 in relation to tumor remission after HER-2 and Raf1 blocking therapy in a conditional mouse tumor model. Mol Carcinog 45:302–308PubMedCrossRefGoogle Scholar
  14. Hengstler JG, Brulport M, Schormann W, Bauer A, Hermes M, Nussler AK, Fandrich F, Ruhnke M, Ungefroren H, Griffin L, Bockamp E, Oesch F, von Mach M (2005) Generation of human hepatocytes by stem cell technology: definition of the hepatocyte. Expert Opin Drug Metab Toxicol 1:61–74PubMedCrossRefGoogle Scholar
  15. Hengstler JG, Bockamp EO, Hermes M, Brulport M, Bauer A, Schormann W, Schiffer IB, Hausherr C, Eshkind L, Antunes C, Franzen A, Krishnamurthi K, Lausch E, Lessig R, Chakrabarti T, Prawitt D, Zabel B, Spangenberg C (2006) Oncogene-blocking therapies: new insights from conditional mouse tumor models. Curr Cancer Drug Targets 6:603–612PubMedCrossRefGoogle Scholar
  16. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51PubMedCrossRefGoogle Scholar
  17. Jaiswal JK, Goldman ER, Mattoussi H, Simon SM (2004) Use of quantum dots for live cell imaging. Nat Methods 1:73–78PubMedCrossRefGoogle Scholar
  18. Koeppel F, Jaiswal JK, Simon SM (2007) Quantum dot-based sensor for improved detection of apoptotic cells. Nanomedicine 2:71–78PubMedCrossRefGoogle Scholar
  19. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436PubMedCrossRefGoogle Scholar
  20. Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414PubMedCrossRefGoogle Scholar
  21. Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV (2003) Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2:50–64PubMedCrossRefGoogle Scholar
  22. Mohrmann G, Hengstler JG, Hofmann TG, Endele SU, Lee B, Stelzer C, Zabel B, Brieger J, Hasenclever D, Tanner B, Sagemueller J, Sehouli J, Will H, Winterpacht A (2005) SPOC1, a novel PHD-finger protein: association with residual disease and survival in ovarian cancer. Int J Cancer 116:547–554PubMedCrossRefGoogle Scholar
  23. Nussler A, Konig S, Ott M, Sokal E, Christ B, Thasler W, Brulport M, Gabelein G, Schormann W, Schulze M, Ellis E, Kraemer M, Nocken F, Fleig W, Manns M, Strom SC, Hengstler JG (2006) Present status and perspectives of cell-based therapies for liver diseases. J Hepatol 45:144–159PubMedCrossRefGoogle Scholar
  24. Ruhnke M, Ungefroren H, Nussler A, Martin F, Brulport M, Schormann W, Hengstler JG, Klapper W, Ulrichs K, Hutchinson JA, Soria B, Parwaresch RM, Heeckt P, Kremer B, Fändrich F (2005a) Reprogramming of human peripheral blood monocytes into functional hepatocyte and pancreatic islet-like cells. Gastroenterology 128:1774–1786PubMedCrossRefGoogle Scholar
  25. Ruhnke M, Nussler AK, Ungefroren H, Hengstler JG, Kremer B, Hoeckh W, Gottwald T, Heeckt P, Fandrich F (2005b) Human monocyte-derived neohepatocytes: a promising alternative to primary human hepatocytes for autologous cell therapy. Transplantation 79:1097–1103PubMedCrossRefGoogle Scholar
  26. Schiffer IB, Gebhard S, Heimerdinger CK, Heling A, Hast J, Wollscheid U, Seliger B, Tanner B, Gilbert S, Beckers T, Baasner S, Brenner W, Spangenberg C, Prawitt D, Trost T, Schreiber WG, Zabel B, Thelen M, Lehr HA, Oesch F, Hengstler JG (2003) Switching off her-2/neu in a tetracycline-controlled mouse tumor model leads to apoptosis and tumor-size-dependent remission. Cancer Res 63:7221–7231PubMedGoogle Scholar
  27. Schmidt M, Bremer E, Hasenclever D, Victor A, Gehrmann M, Steiner E, Schiffer IB, Gebhardt S, Lehr HA, Mahlke M, Hermes M, Mustea A, Tanner B, Koelbl H, Pilch H, Hengstler JG (2007) Role of the progesterone receptor for paclitaxel resistance in primary breast cancer. Br J Cancer 96:241–247PubMedCrossRefGoogle Scholar
  28. Spangenberg C, Lausch EU, Trost TM, Prawitt D, May A, Keppler R, Fees SA, Reutzel D, Bell C, Schmitt S, Schiffer IB, Weber A, Brenner W, Hermes M, Sahin U, Tureci O, Koelbl H, Hengstler JG, Zabel BU (2006) ERBB2-mediated transcriptional up-regulation of the alpha5beta1 integrin fibronectin receptor promotes tumor cell survival under adverse conditions. Cancer Res 66:3715–3725PubMedCrossRefGoogle Scholar
  29. Tanner B, Hasenclever D, Stern K, Schormann W, Bezler M, Hermes M, Brulport M, Bauer A, Schiffer IB, Gebhard S, Schmidt M, Steiner E, Sehouli J, Edelmann J, Lauter J, Lessig R, Krishnamurthi K, Ullrich A, Hengstler JG (2006) ErbB-3 predicts survival in ovarian cancer. J Clin Oncol 24:4317–4323PubMedCrossRefGoogle Scholar
  30. Trost TM, Lausch EU, Fees SA, Schmitt S, Enklaar T, Reutzel D, Brixel LR, Schmidtke P, Maringer M, Schiffer IB, Heimerdinger CK, Hengstler JG, Fritz G, Bockamp EO, Prawitt D, Zabel BU, Spangenberg C (2005) Premature senescence is a primary fail-safe mechanism of ERBB2-driven tumorigenesis in breast carcinoma cells. Cancer Res 65:840–849PubMedGoogle Scholar
  31. von Mach MA, Hengstler JG, Brulport M, Eberhardt M, Schormann W, Hermes M, Prawitt D, Zabel B, Grosche J, Reichenbach A, Muller B, Weilemann LS, Zulewski H (2004) In vitro cultured islet-derived progenitor cells of human origin express human albumin in severe combined immunodeficiency mouse liver in vivo. Stem Cells 22:1134–1141CrossRefGoogle Scholar
  32. Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10:993–998PubMedCrossRefGoogle Scholar
  33. Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Wiebke Schormann
    • 1
  • Friedrich J. Hammersen
    • 1
  • Marc Brulport
    • 1
  • Matthias Hermes
    • 1
  • Alexander Bauer
    • 1
  • Claudia Rudolph
    • 1
  • Markus Schug
    • 1
  • Thomas Lehmann
    • 2
  • Andreas Nussler
    • 3
  • Hendrik Ungefroren
    • 4
  • James Hutchinson
    • 4
  • Fred Fändrich
    • 4
  • Jörg Petersen
    • 5
  • Karsten Wursthorn
    • 5
  • Martin R. Burda
    • 5
  • Oliver Brüstle
    • 6
  • Kannan Krishnamurthi
    • 7
  • Marc von Mach
    • 8
  • Jan G. Hengstler
    • 1
  1. 1.Leibniz Research Centre for Working Environment and Human Factors at the University of Dortmund (IfADo)DortmundGermany
  2. 2.TRM-LeipzigUniversity of LeipzigLeipzigGermany
  3. 3.TU Munich, Department of TraumatologyMunichGermany
  4. 4.Department of General and Thoracic SurgeryUniversity Hospital Schleswig-HolsteinKielGermany
  5. 5.Department of Internal MedicineUniversity Hospital Hamburg-EppendorfHamburgGermany
  6. 6.Institute of Reconstructive NeurobiologyUniversity of Bonn, Life and Brain Center and Hertie FoundationBonnGermany
  7. 7.Environmental Biotechnology DivisionNational Environmental Engineering Research Institute (NEERI)NagpurIndia
  8. 8.II. Medical DepartmentUniversity of MainzMainzGermany

Personalised recommendations