Histochemistry and Cell Biology

, Volume 129, Issue 3, pp 301–310 | Cite as

Cysts of PRKCSH mutated polycystic liver disease patients lack hepatocystin but express Sec63p

  • Esmé Waanders
  • Huib J. E. Croes
  • Cathy N. Maass
  • René H. M. te Morsche
  • Hendrikus J. A. A. van Geffen
  • J. Han J. M. van Krieken
  • Jack A. M. Fransen
  • Joost P. H. Drenth
Original Paper


Polycystic liver disease (PCLD) is an inherited disorder caused by mutations in either PRKCSH (hepatocystin) or SEC63 (Sec63p). However, expression patterns of the implicated proteins in diseased and normal liver are unknown. We analyzed subcellular and cellular localization of hepatocystin and Sec63p using cell fractionation, immunofluorescence, and immunohistochemical methods. Expression patterns were assessed in fetal liver, PCLD liver, and normal adult liver. We found hepatocystin and Sec63p expression predominantly in the endoplasmic reticulum. In fetal tissue, there was intense expression of hepatocystin in ductal plate, bile ducts, and hepatocytes. However, Sec63p staining was prominent in early hepatocytes only and weak in bile ducts throughout development. In PCLD tissue, hepatocystin was expressed in hepatocytes, bile ducts, and in cyst epithelium of patients negative for PRKCSH mutation. In contrast, the majority of cysts from PRKCSH mutation carriers did not express hepatocystin. Sec63p expression was observed in all cyst epithelia regardless of mutational state. We conclude that hepatocystin is probably required for development of bile ducts and does not interact with Sec63p. The results support the hypothesis that cyst formation in PCLD results from a cellular recessive mechanism involving loss of hepatocystin. Cystogenesis in SEC63-associated PCLD occurs via a different mechanism.


PCLD Hepatocystin Sec63p (Sub)cellular localization Liver development Two hit model 



This study would not have been possible without the unreserved and generous participation of the patients. Therefore, we wish to thank all patients for participation in our study. We acknowledge all contributors of the Departments of Pathology from Jeroen Bosch Hospital, Den Bosch; Erasmus University Medical Center, Rotterdam; University Medical Center Groningen, Groningen; Saint Elisabeth Hospital, Tilburg; Academic Medical Center Amsterdam, Amsterdam; Leiden University Medical Center, Leiden for their assistance in collecting patients’ samples. We also thank Hennie Schaap-Roelofs and Anke Lameris for their technical assistance. Joost PH Drenth is supported by a VIDI fellowship from the Netherlands Organization for Scientific Research (NWO).

Supplementary material

418_2008_381_MOESM1_ESM.tif (4.5 mb)
Subcellular expression of hepatocystin and Sec63p in cholangiocytes Immunofluorescence double staining of hepatocystin (a, c, d, e) and Sec63p (b, f, g, h) in green in conjunction with ER marker PDI (a, b), cis-Golgi apparatus marker ERGIC-53 (c, f), Golgi apparatus marker Giantin (d, g), and Lysosome marker LAMP1 (e, h) in red. Scale bars correspond to 10mm (TIF 4652 kb)
418_2008_381_MOESM2_ESM.tif (3.9 mb)
Subcellular expression of hepatocystin and Sec63p in HeLa cells Immunofluorescence double staining of hepatocystin (a, c, d, e, f) and Sec63p (b, g, h, i, j) in green together with ER marker PDI (a, b), cis-Golgi apparatus marker ERGIC-53 (c, g), Golgi apparatus marker Giantin (d, h), Lysosome marker LAMP1 (e, i) and mitochondrial marker Mito Tracker (f, j) in red. Scale bars correspond to 10mm (TIF 4375 kb)
418_2008_381_MOESM3_ESM.doc (22 kb)
(DOC 21 kb)
418_2008_381_MOESM4_ESM.doc (22 kb)
(DOC 22 kb)
418_2008_381_MOESM5_ESM.doc (20 kb)
(DOC 20 kb)


  1. Brada D, Kerjaschki D, Roth J (1990) Cell type-specific post-Golgi apparatus localization of a “resident” endoplasmic reticulum glycoprotein, glucosidase II. J Cell Biol 110:309–318PubMedCrossRefGoogle Scholar
  2. Davila S, Furu L, Gharavi AG, Tian X, Onoe T, Qian Q, Li A, Cai Y, Kamath PS, King BF, Azurmendi PJ, Tahvanainen P, Kaariainen H, Hockerstedt K, Devuyst O, Pirson Y, Martin RS, Lifton RP, Tahvanainen E, Torres VE, Somlo S (2004) Mutations in SEC63 cause autosomal dominant polycystic liver disease. Nat Genet 36:575–577PubMedCrossRefGoogle Scholar
  3. Drenth JP, Martina JA, Te Morsche RH, Jansen JB, Bonifacino JS (2004) Molecular characterization of hepatocystin, the protein that is defective in autosomal dominant polycystic liver disease. Gastroenterology 126:1819–1827PubMedCrossRefGoogle Scholar
  4. Fabris L, Strazzabosco M, Crosby HA, Ballardini G, Hubscher SG, Kelly DA, Neuberger JM, Strain AJ, Joplin R (2000) Characterization and isolation of ductular cells coexpressing neural cell adhesion molecule and Bcl-2 from primary cholangiopathies and ductal plate malformations. Am J Pathol 156:1599–1612PubMedGoogle Scholar
  5. Fabris L, Cadamuro M, Fiorotto R, Roskams T, Spirli C, Melero S, Sonzogni A, Joplin RE, Okolicsanyi L, Strazzabosco M (2006) Effects of angiogenic factor overexpression by human and rodent cholangiocytes in polycystic liver diseases. Hepatology 43(5):1001–1012PubMedCrossRefGoogle Scholar
  6. Fleischer S, Kervina M (1974) Subcellular fractionation of rat liver. Methods Enzymol 31:6–41PubMedCrossRefGoogle Scholar
  7. Forough R, Lindner L, Partridge C, Jones B, Guy G, Clark G (2003) Elevated 80K-H protein in breast cancer: a role for FGF-1 stimulation of 80K-H. Int J Biol Markers 18:89–98PubMedGoogle Scholar
  8. Gkika D, Mahieu F, Nilius B, Hoenderop JG, Bindels RJ (2004) 80K-H as a new Ca2+ sensor regulating the activity of the epithelial Ca2+ channel transient receptor potential cation channel V5 (TRPV5). J Biol Chem 279:26351–26357PubMedCrossRefGoogle Scholar
  9. Karhunen PJ, Tenhu M (1986) Adult polycystic liver and kidney diseases are separate entities. Clin Genet 30:29–37PubMedCrossRefGoogle Scholar
  10. Karimbeg AA, Loffeld RJ (2006) Multiple cysts in the liver autosomal dominant polycystic liver disease. Neth J Med 64:199–201PubMedGoogle Scholar
  11. Kida T, Nakanuma Y, Terada T (1992) Cystic dilatation of peribiliary glands in livers with adult polycystic disease and livers with solitary nonparasitic cysts: an autopsy study. Hepatology 16:334–340PubMedCrossRefGoogle Scholar
  12. Knuth A, Gabbert H, Dippold W, Klein O, Sachsse W, Bitter-Suermann D, Prellwitz W, Meyer zum Buschenfelde KH (1985) Biliary adenocarcinoma. Characterisation of three new human tumor cell lines. J Hepatol 1:579–596PubMedCrossRefGoogle Scholar
  13. Kwok MK, Lewin KJ (1988) Massive hepatomegaly in adult polycystic liver disease. Am J Surg Pathol 12:321–324PubMedCrossRefGoogle Scholar
  14. Lantinga-van Leeuwen IS, Dauwerse JG, Baelde HJ, Leonhard WN, van de Wal A, Ward CJ, Verbeek S, Deruiter MC, Breuning MH, de Heer E, Peters DJ (2004) Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum Mol Genet 13(24):3069–3077PubMedCrossRefGoogle Scholar
  15. Lazaridis KN, Strazzabosco M, Larusso NF (2004) The cholangiopathies: disorders of biliary epithelia. Gastroenterology 127:1565–1577PubMedCrossRefGoogle Scholar
  16. Li YM, Mitsuhashi T, Wojciechowicz D, Shimizu N, Li J, Stitt A, He C, Banerjee D, Vlassara H (1996) Molecular identity and cellular distribution of advanced glycation endproduct receptors: relationship of p60 to OST-48 and p90 to 80K-H membrane proteins. Proc Natl Acad Sci USA 93(20):11047–11052PubMedCrossRefGoogle Scholar
  17. Libbrecht L, Cassiman D, Desmet V, Roskams T (2001) Expression of neural cell adhesion molecule in human liver development and in congenital and acquired liver diseases. Histochem Cell Biol 116:233–239PubMedGoogle Scholar
  18. Lucocq JM, Brada D, Roth J (1986) Immunolocalization of the oligosaccharide trimming enzyme glucosidase II. J Cell Biol 102:2137–2146PubMedCrossRefGoogle Scholar
  19. Masyuk TV, Masyuk AI, Torres VE, Harris PC, Larusso NF (2007) Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3′,5′-cyclic monophosphate. Gastroenterology 132:1104–1116PubMedCrossRefGoogle Scholar
  20. Meyer HA, Grau H, Kraft R, Kostka S, Prehn S, Kalies KU, Hartmann E (2000) Mammalian Sec61 is associated with Sec62 and Sec63. J Biol Chem 275(19):14550–14557PubMedCrossRefGoogle Scholar
  21. Ong AC, Ward CJ, Butler RJ, Biddolph S, Bowker C, Torra R, Pei Y, Harris PC (1999) Coordinate expression of the autosomal dominant polycystic kidney disease proteins, polycystin-2 and polycystin-1, in normal and cystic tissue. Am J Pathol 154:1721–1729PubMedGoogle Scholar
  22. Pei Y (2001) A “two-hit” model of cystogenesis in autosomal dominant polycystic kidney disease? Trends Mol Med 7:151–156PubMedCrossRefGoogle Scholar
  23. Pelletier MF, Marcil A, Sevigny G, Jakob CA, Tessier DC, Chevet E, Menard R, Bergeron JJ, Thomas DY (2000) The heterodimeric structure of glucosidase II is required for its activity, solubility, and localization in vivo. Glycobiology 10:815–827PubMedCrossRefGoogle Scholar
  24. Plemper RK, Bohmler S, Bordallo J, Sommer T, Wolf DH (1997) Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388(6645):891–895PubMedCrossRefGoogle Scholar
  25. Ponting CP (2000) Proteins of the endoplasmic-reticulum-associated degradation pathway: domain detection and function prediction. Biochem J 351(Pt 2):527–535PubMedCrossRefGoogle Scholar
  26. Qian Q, Li A, King BF, Kamath PS, Lager DJ, Huston J III, Shub C, Davila S, Somlo S, Torres VE (2003) Clinical profile of autosomal dominant polycystic liver disease. Hepatology 37:164–171PubMedCrossRefGoogle Scholar
  27. Raijmakers MT, Jansen PL, Steegers EA, Peters WH (2000) Association of human liver bilirubin UDP-glucuronyltransferase activity with a polymorphism in the promoter region of the UGT1A1 gene. J Hepatol 33:348–351PubMedCrossRefGoogle Scholar
  28. Singla V, Reiter JF (2006) The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313(5787):629–633PubMedCrossRefGoogle Scholar
  29. Skowronek MH, Rotter M, Haas IG (1999) Molecular characterization of a novel mammalian DnaJ-like Sec63p homolog. Biol Chem 380:1133–1138PubMedCrossRefGoogle Scholar
  30. Thivierge C, Kurbegovic A, Couillard M, Guillaume R, Cote O, Trudel M (2006) Overexpression of PKD1 causes polycystic kidney disease. Mol Cell Biol 26:1538–1548PubMedCrossRefGoogle Scholar
  31. Trombetta ES, Fleming KG, Helenius A (2001) Quaternary and domain structure of glycoprotein processing glucosidase II. Biochemistry 40(35):10717–10722PubMedCrossRefGoogle Scholar
  32. Waanders E, te Morsche RH, de Man RA, Jansen JB, Drenth JP (2006) Extensive mutational analysis of PRKCSH and SEC63 broadens the spectrum of polycystic liver disease. Hum Mutat 27(8):830PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Esmé Waanders
    • 1
  • Huib J. E. Croes
    • 2
  • Cathy N. Maass
    • 3
  • René H. M. te Morsche
    • 1
  • Hendrikus J. A. A. van Geffen
    • 4
  • J. Han J. M. van Krieken
    • 3
  • Jack A. M. Fransen
    • 2
  • Joost P. H. Drenth
    • 1
  1. 1.Department of Gastroenterology and HepatologyRadboud University Nijmegen Medical CenterNijmegenThe Netherlands
  2. 2.Department of Cell Biology, Nijmegen Center for Molecular Life SciencesRadboud University Nijmegen Medical CenterNijmegenThe Netherlands
  3. 3.Department of PathologyRadboud University Nijmegen Medical CenterNijmegenThe Netherlands
  4. 4.Department of SurgeryJeroen Bosch Hospitalś HertogenboschThe Netherlands

Personalised recommendations