Histochemistry and Cell Biology

, Volume 129, Issue 3, pp 379–387

Automated quantification of nuclear immunohistochemical markers with different complexity

  • Carlos López
  • Marylène Lejeune
  • María Teresa Salvadó
  • Patricia Escrivà
  • Ramón Bosch
  • Lluis E. Pons
  • Tomás Álvaro
  • Jordi Roig
  • Xavier Cugat
  • Jordi Baucells
  • Joaquín Jaén
Original Paper

Abstract

Manual quantification of immunohistochemically stained nuclear markers is still laborious and subjective and the use of computerized systems for digital image analysis have not yet resolved the problems of nuclear clustering. In this study, we designed a new automatic procedure for quantifying various immunohistochemical nuclear markers with variable clustering complexity. This procedure consisted of two combined macros. The first, developed with a commercial software, enabled the analysis of the digital images using color and morphological segmentation including a masking process. All information extracted with this first macro was automatically exported to an Excel datasheet, where a second macro composed of four different algorithms analyzed all the information and calculated the definitive number of positive nuclei for each image. One hundred and eighteen images with different levels of clustering complexity was analyzed and compared with the manual quantification obtained by a trained observer. Statistical analysis indicated a great reliability (intra-class correlation coefficient > 0.950) and no significant differences between the two methods. Bland–Altman plot and Kaplan–Meier curves indicated that the results of both methods were concordant around 90% of analyzed images. In conclusion, this new automated procedure is an objective, faster and reproducible method that has an excellent level of accuracy, even with digital images with a high complexity.

Keywords

Quantification Nuclei Image Immunohistochemistry Algorithm 

References

  1. Alvaro T, Lejeune M, Salvado MT, Bosch R, Garcia JF, Jaen J, Banham AH, Roncador G, Montalban C, Piris MA (2005) Outcome in Hodgkin’s lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res 11:1467–1473PubMedCrossRefGoogle Scholar
  2. Alvaro T, Lejeune M, Camacho FI, Salvado MT, Sanchez L, Garcia JF, Lopez C, Jaen J, Bosch R, Pons LE, Bellas C, Piris MA (2006a) The presence of STAT1-positive tumor-associated macrophages and their relation to outcome in patients with follicular lymphoma. Haematologica 91:1605–1612PubMedGoogle Scholar
  3. Alvaro T, Lejeune M, Salvado MT, Lopez C, Jaen J, Bosch R, Pons LE (2006b) Immunohistochemical patterns of reactive microenvironment are associated with clinicobiologic behavior in follicular lymphoma patients. J Clin Oncol 24:5350–5357PubMedCrossRefGoogle Scholar
  4. Alvaro-Naranjo T, Lejeune M, Salvado-Usach MT, Bosch-Princep R, Reverter-Branchat G, Jaen-Martinez J, Pons-Ferre LE (2005) Tumor-infiltrating cells as a prognostic factor in Hodgkin’s lymphoma: a quantitative tissue microarray study in a large retrospective cohort of 267 patients. Leuk Lymphoma 46:1581–1591PubMedCrossRefGoogle Scholar
  5. Ancin H, Roysam B, Dufresne TE, Chestnut MM, Ridder GM, Szarowski DH, Turner JN (1996) Advances in automated 3-D image analyses of cell populations imaged by confocal microscopy. Cytometry 25:221–234PubMedCrossRefGoogle Scholar
  6. Anderson NH, Hamilton PW, Bartels PH, Thompson D, Montironi R, Sloan JM (1997) Computerized scene segmentation for the discrimination of architectural features in ductal proliferative lesions of the breast. J Pathol 181:374–380PubMedCrossRefGoogle Scholar
  7. Bartels PH, Bibbo M, Graham A, Paplanus S, Shoemaker RL, Thompson D (1989) Image understanding system for histopathology. Anal Cell Pathol 1:195–214PubMedGoogle Scholar
  8. Bauer KD, de la Torre-Bueno J, Diel IJ, Hawes D, Decker WJ, Priddy C, Bossy B, Ludmann S, Yamamoto K, Masih AS, Espinoza FP, Harrington DS (2000) Reliable and sensitive analysis of occult bone marrow metastases using automated cellular imaging. Clin Cancer Res 6:3552–3559PubMedGoogle Scholar
  9. Bibbo M, Kim DH, di Loreto C, Dytch HE, Galera-Davidson H, Thompson D, Richards DL, Bartels HG, Bartels PH (1990) Tissue architectural features for the grading of prostatic carcinoma. Anal Quant Cytol Histol 12:229–236PubMedGoogle Scholar
  10. Bosch Princep R, Lejeune M, Salvado Usach MT, Jaen Martinez J, Pons Ferre LE, Alvaro Naranjo T (2005) Decreased number of granzyme B+ activated CD8+ cytotoxic T lymphocytes in the inflammatory background of HIV-associated Hodgkin’s lymphoma. Ann Hematol 84:661–666PubMedCrossRefGoogle Scholar
  11. Brey EM, Lalani Z, Johnston C, Wong M, McIntire LV, Duke PJ, Patrick CW Jr (2003) Automated selection of DAB-labeled tissue for immunohistochemical quantification. J Histochem Cytochem 51:575–584PubMedGoogle Scholar
  12. de Jong D, Rosenwald A, Chhanabhai M, Gaulard P, Klapper W, Lee A, Sander B, Thorns C, Campo E, Molina T, Norton A, Hagenbeek A, Horning S, Lister A, Raemaekers J, Gascoyne RD, Salles G, Weller E (2007) Immunohistochemical prognostic markers in diffuse large B-cell lymphoma: validation of tissue microarray as a prerequisite for broad clinical applications—a study from the Lunenburg Lymphoma Biomarker Consortium. J Clin Oncol 25:805–812PubMedCrossRefGoogle Scholar
  13. Garbay C, Chassery JM, Brugal G (1986) An iterative region-growing process for cell image segmentation based on local color similarity and global shape criteria. Anal Quant Cytol Histol 8:25–34PubMedGoogle Scholar
  14. Garrido A, de la Blanca NP (2000) Applying deformable templates for cell image segmentation. Pattern Recognit 33:821–832CrossRefGoogle Scholar
  15. Jagoe R, Steel JH, Vucicevic V, Alexander N, Van Noorden S, Wootton R, Polak JM (1991) Observer variation in quantification of immunocytochemistry by image analysis. Histochem J 23:541–547PubMedCrossRefGoogle Scholar
  16. Johansson AC, Visse E, Widegren B, Sjogren HO, Siesjo P (2001) Computerized image analysis as a tool to quantify infiltrating leukocytes: a comparison between high- and low-magnification images. J Histochem Cytochem 49:1073–1079PubMedGoogle Scholar
  17. Johnsson A, Olsson C, Anderson H, Cavallin-Stahl E (1994) Evaluation of a method for quantitative immunohistochemical analysis of cisplatin-DNA adducts in tissues from nude mice. Cytometry 17:142–150PubMedCrossRefGoogle Scholar
  18. Karlsson MG, Davidsson A, Hellquist HB (1994) Quantitative computerized image analysis of immunostained lymphocytes. A methodological approach. Pathol Res Pract 190:799–807PubMedGoogle Scholar
  19. Keenan SJ, Diamond J, McCluggage WG, Bharucha H, Thompson D, Bartels PH, Hamilton PW (2000) An automated machine vision system for the histological grading of cervical intraepithelial neoplasia (CIN). J Pathol 192:351–362PubMedCrossRefGoogle Scholar
  20. Leong FJ, Leong AS (2004) Digital imaging in pathology: theoretical and practical considerations, and applications. Pathology 36:234–241PubMedCrossRefGoogle Scholar
  21. Levine MD (1985) Vision in man and machines. McGraw-Hill, New YorkGoogle Scholar
  22. Lin G, Adiga U, Olson K, Guzowski JF, Barnes CA, Roysam B (2003) A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. Cytometry A 56:23–36PubMedCrossRefGoogle Scholar
  23. Lockett SJ, Herman B (1994) Automatic detection of clustered, fluorescent-stained nuclei by digital image-based cytometry. Cytometry 17:1–12PubMedCrossRefGoogle Scholar
  24. Loukas CG, Wilson GD, Vojnovic B, Linney A (2003) An image analysis-based approach for automated counting of cancer cell nuclei in tissue sections. Cytometry A 55:30–42PubMedCrossRefGoogle Scholar
  25. Ma W, Lozanoff S (1999) A full color system for quantitative assessment of histochemical and immunohistochemical staining patterns. Biotech Histochem 74:1–9PubMedCrossRefGoogle Scholar
  26. Malpica N, de Solorzano CO, Vaquero JJ, Santos A, Vallcorba I, Garcia-Sagredo JM, del Pozo F (1997) Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry 28:289–297PubMedCrossRefGoogle Scholar
  27. Matkowskyj KA, Cox R, Jensen RT, Benya RV (2003) Quantitative immunohistochemistry by measuring cumulative signal strength accurately measures receptor number. J Histochem Cytochem 51:205–214PubMedGoogle Scholar
  28. McCarty KS Jr, Miller LS, Cox EB, Konrath J, McCarty KS Sr (1985) Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med 109:716–721PubMedGoogle Scholar
  29. Mesker WE, vd Burg JM, Oud PS, Knepfle CF, Ouwerkerk-v Velzen MC, Schipper NW, Tanke HJ (1994) Detection of immunocytochemically stained rare events using image analysis. Cytometry 17:209–215PubMedCrossRefGoogle Scholar
  30. Mosedale DE, Metcalfe JC, Grainger DJ (1996) Optimization of immunofluorescence methods by quantitative image analysis. J Histochem Cytochem 44:1043–1050PubMedGoogle Scholar
  31. Poon SS, Ward RK, Palcic B (1992) Automated image detection and segmentation in blood smears. Cytometry 13:766–774PubMedCrossRefGoogle Scholar
  32. Ranefall P, Egevad L, Nordin B, Bengtsson E (1997) A new method for segmentation of colour images applied to immunohistochemically stained cell nuclei. Anal Cell Pathol 15:145–156PubMedGoogle Scholar
  33. Rubin MA, Zerkowski MP, Camp RL, Kuefer R, Hofer MD, Chinnaiyan AM, Rimm DL (2004) Quantitative determination of expression of the prostate cancer protein alpha-methylacyl-CoA racemase using automated quantitative analysis (AQUA): a novel paradigm for automated and continuous biomarker measurements. Am J Pathol 164:831–840PubMedGoogle Scholar
  34. Seidal T, Balaton AJ, Battifora H (2001) Interpretation and quantification of immunostains. Am J Surg Pathol 25:1204–1207PubMedCrossRefGoogle Scholar
  35. Taylor CR (2000) The total test approach to standardization of immunohistochemistry. Arch Pathol Lab Med 124:945–951PubMedGoogle Scholar
  36. Taylor CR (2006) Quantifiable internal reference standards for immunohistochemistry: the measurement of quantity by weight. Appl Immunohistochem Mol Morphol 14:253–259PubMedCrossRefGoogle Scholar
  37. Underwood RA, Gibran NS, Muffley LA, Usui ML, Olerud JE (2001) Color subtractive-computer-assisted image analysis for quantification of cutaneous nerves in a diabetic mouse model. J Histochem Cytochem 49:1285–1291PubMedGoogle Scholar
  38. van Der Laak JA, Pahlplatz MM, Hanselaar AG, de Wilde PC (2000) Hue-saturation-density (HSD) model for stain recognition in digital images from transmitted light microscopy. Cytometry 39:275–284CrossRefGoogle Scholar
  39. Wu HS, Barba J, Gil J (1998) A parametric fitting algorithm for segmentation of cell images. IEEE Trans Biomed Eng 45:400–407PubMedCrossRefGoogle Scholar
  40. Yaziji H, Barry T (2006) Diagnostic immunohistochemistry: what can go wrong? Adv Anat Pathol 13:238–246PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Carlos López
    • 1
  • Marylène Lejeune
    • 1
  • María Teresa Salvadó
    • 1
  • Patricia Escrivà
    • 1
  • Ramón Bosch
    • 1
  • Lluis E. Pons
    • 1
  • Tomás Álvaro
    • 1
  • Jordi Roig
    • 2
  • Xavier Cugat
    • 2
  • Jordi Baucells
    • 2
  • Joaquín Jaén
    • 1
  1. 1.Department of PathologyHospital de Tortosa Verge de la CintaTortosaSpain
  2. 2.Department of InformaticsHospital de Tortosa Verge de la CintaTortosaSpain

Personalised recommendations