Histochemistry and Cell Biology

, Volume 127, Issue 6, pp 657–667 | Cite as

Laminins in normal, keratoconus, bullous keratopathy and scarred human corneas

  • Berit Byström
  • Ismo Virtanen
  • Patricia Rousselle
  • Kaoru Miyazaki
  • Christina Lindén
  • Fatima Pedrosa Domellöf
Original Paper


The laminin composition (LMα1-α5, β1–β3, γ1 and γ2 chains) of normal corneas and corneal buttons from keratoconus, bullous keratopathy (BKP), Fuchs’ dystrophy + BKP, Fuchs’ dystrophy without BKP and scar after deep lamellar keratoplasty (DLKP) was investigated with immunohistochemistry. The epithelial basement membranes (BMs) of both normal and diseased corneas contained LMα3, α5, β1, β3, γ1 and γ2 chains. The epithelial BM morphology was altered in the different diseases. Scarring was associated with irregular BM and ectopic stromal localization of different laminin chains. The Descemet’s membrane (DM) contained LMα5, β1 and γ1 chains in all cases and additionally LMβ3 and γ2 chains in the majority of keratoconus corneas. The interface in the DLKP cornea had patches of LMα3, α4, α5, β1 and β2 chains, and an extra BM-like structure under the Bowman’s membrane. These results suggest that laminin chains participate in the process of corneal scarring and in the pathogenesis of some corneal diseases. The novel finding of LMα3, β3 and γ2 in the DM of keratoconus buttons indicates that this membrane is also involved in the disease and that some cases of keratoconus may have a congenital origin, without normal downregulation of the LMβ3 chain.


Laminin Cornea Human Keratoconus Basement membrane 



The authors thank Margaretha Enerstedt for excellent technical assistance and professor Donald Gullberg, Bergen, Norway for kindly providing the hLN-α1G4/G5 ab.


  1. Anwar M, Teichmann KD (2002) Big-bubble technique to bare Descemet’s membrane in anterior lamellar keratoplasty. J Cataract Refract Surg 28:398–403PubMedCrossRefGoogle Scholar
  2. Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, Engel J, Engvall E, Hohenester E, Jones JC, Kleinman HK, Marinkovich MP, Martin GR, Mayer U, Meneguzzi G, Miner JH, Miyazaki K, Patarroyo M, Paulsson M, Quaranta V, Sanes JR, Sasaki T, Sekiguchi K, Sorokin LM, Talts JF, Tryggvason K, Uitto J, Virtanen I, von der Mark K, Wewer UM, Yamada Y, Yurchenco PD (2005) A simplified laminin nomenclature. Matrix Biol 24:326–332PubMedCrossRefGoogle Scholar
  3. Baker SE, Hopkinson SB, Fitchmun M, Andreason GL, Frasier F, Plopper G, Quaranta V, Jones JC (1996) Laminin-5 and hemidesmosomes: role of the a3 chain subunit in hemidesmosome stability and assembly. J Cell Sci 109:2509–2520PubMedGoogle Scholar
  4. Barishak YR (2001) Embryology of the eye and its adnexa, 2nd edn. Reinhardt Druck, BaselGoogle Scholar
  5. Bergmanson JPG, Sheldon TM, Goosey JD (1999) Fuch’s endothelial dystrophy: a fresh look at an aging disease. Ophthalmic Physiol Opt 19:210–222PubMedCrossRefGoogle Scholar
  6. Bhojwani RD, Noble B, Chakrabarty AK, Stewart OG (2003) Sequesterede viscoelastic after deep lamellar keratoplasty using viscodissection. Cornea 22:371–373PubMedCrossRefGoogle Scholar
  7. Byström B, Virtanen I, Rousselle P, Gullberg D, Pedrosa-Domellöf F (2006) Distribution of laminins in the developing human eye. Invest Ophthalmol Vis Sci 47:777–785PubMedCrossRefGoogle Scholar
  8. Chau GK, Dilly SA, Sheard CE, Rostron CK (1992) Deep lamellar keratoplasty on air with lyophilised tissue. Br J Ophthalmol 76:646–650PubMedGoogle Scholar
  9. Colognato H, Yurchenco PD (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218:213–234PubMedCrossRefGoogle Scholar
  10. Ebihara N, Wantanbe Y, Nakayasu K, Kanai A (2001) The expression of laminin-5 and ultrastructure of the interface between basal cells and underlying stroma in the keratoconus cornea. Jpn J Ophthalmol 45:209–215PubMedCrossRefGoogle Scholar
  11. Ekblom P, Lonai P, Talts JF (2003) Expression and biological role of laminin-1. Matrix Biol 22:35–47PubMedCrossRefGoogle Scholar
  12. Engvall E, Earwicker D, Haaparanta T, Ruoslahti E, Sanes JR (1990) Distribution and isolation of four laminin variants; tissue restricted distribution of heterotrimers assembled from five different subunits. Cell Regul 1(10):731–740PubMedGoogle Scholar
  13. Falk M, Ferletta M, Forsberg E, Ekblom P (1999) Restricted distribution of laminin a1 chain in normal adult mouse tissues. Matrix Biol 18:557–568PubMedCrossRefGoogle Scholar
  14. Filenius S, Hormia M, Rissanen J, Burgeson RE, Yamada Y, Araki-Sasaki K, Nakamura M, Virtanen I, Tervo T (2001) Laminin synthesis and the adhesion characteristics of immortalized human corneal epithelial cells to laminin isoforms. Exp Eye Res 72:93–103PubMedCrossRefGoogle Scholar
  15. Fine BF, Yanoff M (1979) Ocular histology a text and atlas, 2nd edn. Harper & Row, Hagerstown, pp 147–159Google Scholar
  16. Geberhiwot T, Wondimu Z, Salo S, Pikkarainen T, Kortesmaa J, Tryggvason K, Virtanen I, Patarroyo M (2000) Chain specificity assignment of monoclonal antibodies to human laminins by using recombinant laminin b1 and g1 chains. Matrix Biol 19:163–167PubMedCrossRefGoogle Scholar
  17. Gilmour TK, Meyer PA, Rytina E, Todd PM (2001) Antiepiligrin (laminin 5) cicatricial pemphigoid complicated and exacerbated by herpes simplex virus type 2 infection. Australas J Dermatol 42:271–274PubMedCrossRefGoogle Scholar
  18. Gottsch JD, Zhang C, Sundin OH, Bell RB, Stark WJ, Green WR (2005) Fuchs corneal dystrophy: aberrant collagen distribution in an L450W mutant of the COL8A2 gene. Invest Ophthalmol Vis Sci 46:4504–4511PubMedCrossRefGoogle Scholar
  19. Hirosaki T, Mizushima H, Tsubota Y, Moriyama K, Miyazaki K (2000) Structural requirement of carboxyl-terminal globular domains of laminin a3 chain for promotion of rapid cell adhesion and migration by laminin-5. J Biol Chem 275:22495–22502PubMedCrossRefGoogle Scholar
  20. Hollingsworth JG, Bonshek RE, Efron N (2005) Correlation of the appearance of the keratoconic cornea in vivo by confocal microscopy and in vitro by light microscopy. Cornea 24:397–405PubMedCrossRefGoogle Scholar
  21. Hunter DD, Shah V, Merlie JP, Sanes JR (1989) A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction. Nature 338:229–234PubMedCrossRefGoogle Scholar
  22. Johnson DH, Bourne WM, Campbell RJ (1982) The ultrastructure of Descemet’s membrane. I. Changes with age in normal corneas. Arch Ophthalmol 100:1942–1947PubMedGoogle Scholar
  23. Kaufman H, Barron BA, McDonald MB (1998) Ectatic corneal degenerations. In: The Cornea, 2nd edn. Butterworth-Heinemann, Boston, pp 525–550Google Scholar
  24. Kenney MC, Chwa M (1990) Abnormal extracellular matrix in corneas with pseudophakic bullous keratopathy. Cornea 9:115–121PubMedCrossRefGoogle Scholar
  25. Kirtschig G, Marinkovich M, Burgeson R, Yancey K (1995) Anti-basement membrane autoantibodies in patients with anti-epiligrin cicatricial pemphigoid bind the alpha subunit of laminin 5. J Invest Dermatol 105:543–548PubMedCrossRefGoogle Scholar
  26. Kjellgren D, Thornell L-E, Virtanen I, Pedrosa-Domellöf F (2004) Laminin isoforms in human extraocular muscles. Invest Ophthalmol Vis Sci 45:4233–4239PubMedCrossRefGoogle Scholar
  27. Koulikovska M, Podskochy A, Fagerholm P (2005) The expression pattern of the subunit of chaperonin containing T-complex polypeptide 1 and its substrate, a-smooth muscle actin, during wound healing. Acta Ophthalmol Scand 83:543–548PubMedCrossRefGoogle Scholar
  28. Laing RA, Sandstrom MM, Berrospi AR, Leibowitz HM (1979) The human corneal endothelium in keratoconus: a specular microscopic study. Arch Ophthalmol 97:1867–1869PubMedGoogle Scholar
  29. Ljubimov AV, Burgeson RE, Butkowski R, Couchman J, Wu R, Ninomiya Y, Sado Y, Maguen E, Nesburn A, Kenney MC (1996) Extracellular matrix alterations in human corneas with bullous keratopathy. Invest Ophthalmol Vis Sci 37:997–1007PubMedGoogle Scholar
  30. Ljubimov AV, Atilano S, Garner M, Maguen E, Nesburn A, Kenney MC (2002) Extracellular matrix and Na+,K+-ATPase in human corneas following cataract surgery: comparison with bullous keratopathy and Fuch´s dystrophy corneas. Cornea 21:74–80PubMedCrossRefGoogle Scholar
  31. Marinkovich MP, Lunstrum GP, Keene DR, Burgeson RE (1992) The dermal-epidermal junction of human skin contains a novel laminin variant. J Cell Biol 119:695–703PubMedCrossRefGoogle Scholar
  32. McMillan J, McGrath J, Pulkkinen L, Kon A, Burgeson R, Ortonne J, Meneguzzi G, Uitto J, Eady R (1997) Immunohistochemical analysis of the skin in junctional epidermolysis bullosa using laminin 5 chain specific antibodies is of limited value in predicting the underlying gene mutation. Br J Dermatol 136:817–822PubMedCrossRefGoogle Scholar
  33. Miner JH, Yurchenco PD (2004) Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol 20:255–284PubMedCrossRefGoogle Scholar
  34. Mizushima H, Koshikawa N, Moriyama K, Takamura H, Nagashima Y, Hirahara F, Miyazaki K (1998) Wide distribution of laminin-5 g2 chain in basement membranes of various human tissues. Horm Res 50:7–14PubMedCrossRefGoogle Scholar
  35. Murphy C, Alvardo J, Juster R (1984) Prenatal and postnatal growth of the human Descemet’s membrane. Invest Ophthalmol Vis Sci 25:1402–1415PubMedGoogle Scholar
  36. Nakamura K (2003) Interaction between injured corneal epithelial cells and stromal cells. Cornea 22:35–47CrossRefGoogle Scholar
  37. Nakamura K, Kurosaka D, Yoshino M, Oshima T, Kurosaka H (2002) Injured corneal epithelial cells promote myodifferentiation of corneal fibroblasts. Invest Ophthalmol Vis Sci 43:2603–2608PubMedGoogle Scholar
  38. Petäjäniemi N, Korhonen M, Kortesmaa J, Tryggvason K, Sekiguchi K, Fujiwara H, Sorokin L, Thornell LE, Wondimu Z, Assefa D, Patarroyo M, Virtanen I (2002) Localization of laminin a4-chain in developing and adult human tissues. J Histochem Cytochem 50:1113–1130PubMedGoogle Scholar
  39. Rousselle P, Lunstrum GP, Keene DR, Burgeson RE (1991) Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments. J Cell Biol 114:567–576PubMedCrossRefGoogle Scholar
  40. Sawaguchi S, Fukuchi T, Abe H, Kaiya T, Sugar J, Yue B (1998) Three-dimensional scanning electron microscopic study of keratoconus corneas. Arch Ophthalmol 116(1):62–68PubMedGoogle Scholar
  41. Schmitt-Graff A, Desmouliere A, Gabbiani G (1994) Heterogeneity of myofibroblast phenotypic features: an example of fibroblastic cell plasticity. Virchows Arch 425:3–24PubMedCrossRefGoogle Scholar
  42. Sewry C, Uziyel Y, Torelli S, Buchanan S, Sorokin L, Cohen J, Watt D (1998) Differential labelling of laminin alpha 2 in muscle and neural tissue of dy/dy mice: are there isoforms of the laminin alpha 2 chain?. Neuropathol Appl Neurobiol 24:66–72PubMedGoogle Scholar
  43. Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G (1986) A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103:2787–2796PubMedCrossRefGoogle Scholar
  44. Stone DL, Kenyon KR, Stark WJ (1976) Ultrastructure of keratoconus with healed hydrops. Am J Ophthalmol 82:450–458PubMedGoogle Scholar
  45. Sturbaum CW, Peiffer RLJ (1993) Pathology of corneal endothelium in keratoconus. Ophthalmologica 206:192–208PubMedCrossRefGoogle Scholar
  46. Tiger CF, Champliaud MF, Pedrosa-Domellöf F, Thornell L-E, Ekblom P, Gullberg D (1997) Presence of laminin a5 chain and lack of laminin a1 chain during human muscle development and in muscular dystrophies. J Biol Chem 272:28590–28595PubMedCrossRefGoogle Scholar
  47. Virtanen I, Gullberg D, Rissanen J, Kivilaakso E, Kiviluoto T, Laitinen LA, Lehto V-P, Ekblom P (2000) Laminin a1-chain shows a restricted distribution in epithelial basement membranes of fetal and adult human tissues. Exp Cell Res 257:298–309PubMedCrossRefGoogle Scholar
  48. Wewer U, Durkin M, Zhang X, Laursen H, Nielsen N, Towfighi J, Engvall E, Albrechtsen R (1995) Laminin beta 2 chain and adhalin defiency in the skeletal muscle of Walker-Warburg syndrome (cerebro-ocular dysplasia-muscular dystrophy). Neurology 45:2099–2101PubMedGoogle Scholar
  49. Wilson SE, Hong J-W (2000) Bowman´s layer structure and function; critical or dispensable to corneal function? A hypothesis. Cornea 19:417–420PubMedCrossRefGoogle Scholar
  50. Zenker M, Aigner T, Wendler O, Tralau T, Muntefering H, Fenski R, Pitz S, Schumacher V, Royer-Pokora B, Wuhl E, Cochat P, Bouvier R, Kraus C, Mark K, Madlon H, Dötsch J, Rascher W, Maruniak-Chudek I, Lennert T, Neumann LM, Reis A (2004) Human laminin b2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet 13:2625–2632PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Berit Byström
    • 1
    • 2
  • Ismo Virtanen
    • 3
  • Patricia Rousselle
    • 4
  • Kaoru Miyazaki
    • 5
  • Christina Lindén
    • 2
  • Fatima Pedrosa Domellöf
    • 1
    • 2
  1. 1.Department of Integrative Medical Biology, Section for AnatomyUmeå UniversityUmeåSweden
  2. 2.Department of Clinical Sciences, OphthalmologyUmeå UniversityUmeåSweden
  3. 3.Institute of Biomedicine/AnatomyUniversity of HelsinkiHelsinkiFinland
  4. 4.Institut de Biologie et Chimie des Protéines, CNRSUniversité Lyon, IFR128 BioSciencesLyonFrance
  5. 5.Division of Cell Biology, Kihara Institute for Biological ResearchYokohama City UniversityYokohamaJapan

Personalised recommendations