Histochemistry and Cell Biology

, Volume 127, Issue 2, pp 139–148 | Cite as

Nuclear myosin is ubiquitously expressed and evolutionary conserved in vertebrates

  • M. Kahle
  • J. Přidalová
  • M. Špaček
  • R. Dzijak
  • P. Hozák
Original Paper

Abstract

Nuclear myosin I (NMI) is a single-headed member of myosin superfamily localized in the cell nucleus which participates along with nuclear actin in transcription and chromatin remodeling. We demonstrate that NMI is present in cell nuclei of all mouse tissues examined except for cells in terminal stages of spermiogenesis. Quantitative PCR and western blots demonstrate that the expression of NMI in tissues varies with the highest levels in the lungs. The expression of NMI is lower in serum-starved cells and it increases after serum stimulation. The lifespan of NMI is longer than 16 h as determined by cycloheximide translation block. A homologous protein is expressed in human, chicken, Xenopus, and zebrafish as shown by RACE analysis. The analysis of genomic sequences indicates that almost identical homologous NMI genes are expressed in mammals, and similar NMI genes in vertebrates.

Keywords

Nuclear myosin I Myosin 1c Transcription Chromatin Tissue expression 

Notes

Acknowledgments

We are grateful to Peter G. Gillespie for the anti-Myo1c antibody, Lenka Rossmeislová and Zdeněk Hodný for critically reading the manuscript. This work was supported by the Grant Agency of Czech Republic (reg. no. 204/04/0108), Grant Agency of the Academy of Sciences of the Czech Republic (reg. No. IAA5039202), grant LC545 of the MSMT, and by the institutional grant no. AV0Z50390512. MŠ and RD were supported by the student program of the Grant Agency of the Czech Republic (reg. No. 204/05/H023 IV).

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94PubMedCrossRefGoogle Scholar
  3. Cavellan E, Asp P, Percipalle P, Ostlund Farrants AK (2006) The WSTF-SNF2h chromatin remodelling complex interacts with several nuclear proteins in transcription. J Biol Chem 281(24):16264–16271PubMedCrossRefGoogle Scholar
  4. Chuang CH, Carpenter AE, Fuchsova B, Johnson T, de Lanerolle P, Belmont AS (2006) Long-range directional movement of an interphase chromosome site. Curr Biol 16:825–831PubMedCrossRefGoogle Scholar
  5. Crozet F, el Amraoui A, Blanchard S, Lenoir M, Ripoll C, Vago P, Hamel C, Fizames C, Levi-Acobas F, Depetris D, Mattei MG, Weil D, Pujol R, Petit C (1997) Cloning of the genes encoding two murine and human cochlear unconventional type I myosins. Genomics 40:332–341PubMedCrossRefGoogle Scholar
  6. de Lanerolle P, Johnson T, Hofmann WA (2005) Actin and myosin I in the nucleus: what next? Nat Struct Mol Biol 12:742–746PubMedCrossRefGoogle Scholar
  7. Fomproix N, Percipalle P (2004) An actin–myosin complex on actively transcribing genes. Exp Cell Res 294:140–148PubMedCrossRefGoogle Scholar
  8. Gillespie PG, Cyr JL (2004) Myosin-1c, the hair cell’s adaptation motor. Annu Rev Physiol 66:521–545PubMedCrossRefGoogle Scholar
  9. Gonda DK, Bachmair A, Wunning I, Tobias JW, Lane WS, Varshavsky A (1989) Universality and structure of the N-end rule. J Biol Chem 264:16700–16712PubMedGoogle Scholar
  10. Grummt I (2006) Actin and myosin as transcription factors. Curr Opin Genet Dev 16:191–196PubMedCrossRefGoogle Scholar
  11. Iyer VR, Eisen MB, Ross DT, Schuler G, Moore T, Lee JC, Trent JM, Staudt LM, Hudson J Jr, Boguski MS, Lashkari D, Shalon D, Botstein D, Brown PO (1999) The transcriptional program in the response of human fibroblasts to serum. Science 283:83–87PubMedCrossRefGoogle Scholar
  12. Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957PubMedCrossRefGoogle Scholar
  13. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  14. Kysela K, Philimonenko AA, Philimonenko VV, Janacek J, Kahle M, Hozak P (2005) Nuclear distribution of actin and myosin I depends on transcriptional activity of the cell. Histochem Cell Biol 124:347–358PubMedCrossRefGoogle Scholar
  15. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  16. Percipalle P, Farrants AK (2006) Chromatin remodelling and transcription: be-WICHed by nuclear myosin 1. Curr Opin Cell Biol 18(3):267–274PubMedCrossRefGoogle Scholar
  17. Percipalle P, Fomproix N, Cavellan E, Voit R, Reimer G, Kruger T, Thyberg J, Scheer U, Grummt I, Ostlund Farrants AK (2006) The chromatin remodelling complex WSTF-SNF2h interacts with nuclear myosin 1 and has a role in RNA polymerase I transcription. EMBO Rep 7:525–530PubMedGoogle Scholar
  18. Pestic-Dragovich L, Stojiljkovic L, Philimonenko AA, Nowak G, Ke Y, Settlage RE, Shabanowitz J, Hunt DF, Hozak P, de Lanerolle P (2000) A myosin I isoform in the nucleus. Science 290:337–341PubMedCrossRefGoogle Scholar
  19. Philimonenko VV, Zhao J, Iben S, Dingova H, Kysela K, Kahle M, Zentgraf H, Hofmann WA, de Lanerolle P, Hozak P, Grummt I (2004) Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat Cell Biol 6:1165–1172PubMedCrossRefGoogle Scholar
  20. Rossini K, Rizzi C, Sandri M, Bruson A, Carraro U (1995) High-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunochemical identification of the 2 X and embryonic myosin heavy chains in complex mixtures of isomyosins. Electrophoresis 16:101–104PubMedCrossRefGoogle Scholar
  21. Ruppert C, Godel J, Muller RT, Kroschewski R, Reinhard J, Bahler M (1995) Localization of the rat myosin I molecules myr 1 and myr 2 and in vivo targeting of their tail domains. J Cell Sci 108(Pt 12):3775–3786PubMedGoogle Scholar
  22. Sherr EH, Joyce MP, Greene LA (1993) Mammalian myosin I alpha, I beta, and I gamma: new widely expressed genes of the myosin I family. J Cell Biol 120:1405–1416PubMedCrossRefGoogle Scholar
  23. Wagner MC, Barylko B, Albanesi JP (1992) Tissue distribution and subcellular localization of mammalian myosin I. J Cell Biol 119:163–170PubMedCrossRefGoogle Scholar
  24. Williams R, Coluccio LM (1995) Phosphorylation of myosin-I from rat liver by protein kinase C reduces calmodulin binding. Biochem Biophys Res Commun 216:90–102PubMedCrossRefGoogle Scholar
  25. Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M, Ophir R, Bar-Even A, Horn-Saban S, Safran M, Domany E, Lancet D, Shmueli O (2005) Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21:650–659PubMedCrossRefGoogle Scholar
  26. Yildirim A, Whish WJ (1997) The role of protein secretion on the adhesion strength of Chinese hamster lung (CHL) cells. Biochem Soc Trans 25:397–405Google Scholar
  27. Zhu T, Beckingham K, Ikebe M (1998) High affinity Ca2+ binding sites of calmodulin are critical for the regulation of myosin Ibeta motor function. J Biol Chem 273:20481–20486PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. Kahle
    • 1
    • 2
  • J. Přidalová
    • 1
  • M. Špaček
    • 1
    • 3
  • R. Dzijak
    • 1
  • P. Hozák
    • 1
    • 2
  1. 1.Institute of Experimental Medicine, Department of Cell Ultrastructure and Molecular BiologyAcademy of Sciences of the Czech RepublicPrague 4Czech Republic
  2. 2.Institute of Molecular Genetics, Department of Biology of the Cell NucleusAcademy of Sciences of the Czech RepublicPrague 4Czech Republic
  3. 3.Department of Histology and Embryology, 3rd Faculty of MedicineCharles UniversityPrague 10Czech Republic

Personalised recommendations