Histochemistry and Cell Biology

, Volume 126, Issue 6, pp 713–722 | Cite as

Spatiotemporal distribution of heparan sulfate epitopes during murine cartilage growth plate development

  • Ronald R. GomesJr
  • Toin H. Van Kuppevelt
  • Mary C. Farach-Carson
  • Daniel D. Carson
Original paper


Heparan sulfate proteoglycans (HSPGs) are abundant in the pericellular matrix of both developing and mature cartilage. Increasing evidence suggests the action of numerous chondroregulatory molecules depends on HSPGs. In addition to specific functions attributed to their core protein, the complexity of heparan sulfate (HS) synthesis provides extraordinary structural and functional heterogeneity. Understanding the interactions of chondroregulatory molecules with HSPGs and their subsequent outcomes has been limited by the absence of a detailed analysis of HS species in cartilage. In this study, we characterize the distribution and variety of HS species in developing cartilage of normal mice. Cryo-sections of femur and tibia from normal mouse embryos were evaluated using immunostaining techniques. A panel of unique phage display antibodies specific to particular HS species were employed and visualized with secondary antibodies conjugated to Alexa-fluor dyes. Confocal microscopy demonstrates that HS species are dynamic structures within developing growth plate cartilage and the perichondrium. GlcNS6S-IdoUA2S-GlcNS6S species are down regulated and localization of GlcNS6S-IdoUA-GlcNS6S species within the hypertrophic zone of the growth plate is lost during normal development. Regional differences in HS structures are present within developing growth plates, implying that interactions with and responses to HS-binding proteins also may display regional specialization.


Glycosaminoglycan Heparan sulfate proteoglycan Chondrogenesis Growth plate 


  1. Arikawa-Hirasawa E, Watanabe H, Takami H, Hassell JR, Yamada Y (1999) Perlecan is essential for cartilage and cephalic development. Nat Genet 23:354–358PubMedCrossRefGoogle Scholar
  2. Ashikari S, Habuchi H, Kimata K (1995) Characterization of heparan sulfate oligosaccharides that bind to hepatocyte growth factor. J Biol Chem 270:29586–29593PubMedCrossRefGoogle Scholar
  3. Atha DH, Stephens AW, Rimon A, Rosenberg RD (1984a) Sequence variation in heparin octasaccharides with high affinity for antithrombin III. Biochemistry 23:5801–5812CrossRefGoogle Scholar
  4. Atha DH, Stephens AW, Rosenberg RD (1984b) Evaluation of critical groups required for the binding of heparin to antithrombin. Proc Natl Acad Sci USA 81:1030–1034CrossRefGoogle Scholar
  5. Axelsson S, Holmlund A, Hjerpe A (1992) Glycosaminoglycans in normal and osteoarthrotic human temporomandibular joint disks. Acta Odontol Scand 50:113–119PubMedCrossRefGoogle Scholar
  6. Baeg GH, Perrimon N (2000) Functional binding of secreted molecules to heparan sulfate proteoglycans in Drosophila. Curr Opin Cell Biol 12:575–580PubMedCrossRefGoogle Scholar
  7. Bernard MA, Hogue DA, Cole WG, Sanford T, Snuggs MB, Montufar-Solis D, Duke PJ, Carson DD, Scott A, Van Winkle WB, Hecht JT (2000) Cytoskeletal abnormalities in chondrocytes with EXT1 and EXT2 mutations. J Bone Miner Res 15:442–450PubMedCrossRefGoogle Scholar
  8. Bullock SL, Fletcher JM, Beddington RS, Wilson VA (1998) Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev 12:1894–1906PubMedCrossRefGoogle Scholar
  9. Cano-Gauci DF, Song HH, Yang H, McKerlie C, Choo B, Shi W, Pullano R, Piscione TD, Grisaru S, Soon S, Sedlackova L, Tanswell AK, Mak TW, Yeger H, Lockwood GA, Rosenblum ND, Filmus J (1999) Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-Behmel syndrome. J Cell Biol 146:255–264PubMedGoogle Scholar
  10. Chimal-Monroy J, Diaz de Leon L (1999) Expression of N-cadherin, N-CAM, fibronectin and tenascin is stimulated by TGF-beta1, beta2, beta3 and beta5 during the formation of precartilage condensations. Int J Dev Biol 43:59–67PubMedGoogle Scholar
  11. Costell M, Gustafsson E, Aszodi A, Morgelin M, Bloch W, Hunziker E, Addicks K, Timpl R, Fassler R (1999) Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 147:1109–1122PubMedCrossRefGoogle Scholar
  12. Dennissen MA, Jenniskens GJ, Pieffers M, Versteeg EM, Petitou M, Veerkamp JH, van Kuppevelt TH (2002) Large, tissue-regulated domain diversity of heparan sulfates demonstrated by phage display antibodies. J Biol Chem 277:10982–10986PubMedCrossRefGoogle Scholar
  13. Dowd CJ, Cooney CL, Nugent MA (1999) Heparan sulfate mediates bFGF transport through basement membrane by diffusion with rapid reversible binding. J Biol Chem 274:5236–5244PubMedCrossRefGoogle Scholar
  14. Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471PubMedCrossRefGoogle Scholar
  15. Faham S, Hileman RE, Fromm JR, Linhardt RJ, Rees DC (1996) Heparin structure and interactions with basic fibroblast growth factor. Science 271:1116–1120PubMedCrossRefGoogle Scholar
  16. French MM, Smith SE, Akanbi K, Sanford T, Hecht J, Farach-Carson MC, Carson DD (1999) Expression of the heparan sulfate proteoglycan, perlecan, during mouse embryogenesis and perlecan chondrogenic activity in vitro. J Cell Biol 145:1103–1115PubMedCrossRefGoogle Scholar
  17. Gould SE, Upholt WB, Kosher RA (1992) Syndecan 3: a member of the syndecan family of membrane-intercalated proteoglycans that is expressed in high amounts at the onset of chicken limb cartilage differentiation. Proc Natl Acad Sci USA 89:3271–3275PubMedCrossRefGoogle Scholar
  18. Guimond S, Turner K, Kita M, Ford-Perriss M, Turnbull J (2001) Dynamic biosynthesis of heparan sulphate sequences in developing mouse brain: a potential regulatory mechanism during development. Biochem Soc Trans 29:177–181PubMedCrossRefGoogle Scholar
  19. Handler M, Yurchenco PD, Iozzo RV (1997) Developmental expression of perlecan during murine embryogenesis. Dev Dyn 210:130–145PubMedCrossRefGoogle Scholar
  20. Hassell J, Yamada Y, Arikawa-Hirasawa E (2002) Role of perlecan in skeletal development and diseases. Glycoconj J 19:263–267PubMedCrossRefGoogle Scholar
  21. Inatani M, Honjo M, Oohira A, Kido N, Otori Y, Tano Y, Honda Y, Tanihara H (2002) Spatiotemporal expression patterns of N-syndecan, a transmembrane heparan sulfate proteoglycan, in developing retina. Invest Ophthalmol Vis Sci 43:1616–1621PubMedGoogle Scholar
  22. Inatani M, Yamaguchi Y (2003) Gene expression of EXT1 and EXT2 during mouse brain development. Brain Res Dev Brain Res 141:129–136PubMedCrossRefGoogle Scholar
  23. Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652PubMedCrossRefGoogle Scholar
  24. Jenniskens GJ, Hafmans T, Veerkamp JH, van Kuppevelt TH (2002) Spatiotemporal distribution of heparan sulfate epitopes during myogenesis and synaptogenesis: a study in developing mouse intercostal muscle. Dev Dyn 225:70–79PubMedCrossRefGoogle Scholar
  25. Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406PubMedCrossRefGoogle Scholar
  26. Kirn-Safran CB, Gomes RR, Brown AJ, Carson DD (2004) Heparan sulfate proteoglycans: coordinators of multiple signaling pathways during chondrogenesis. Birth Defects Res C Embryo Today 72:69–88PubMedCrossRefGoogle Scholar
  27. Kirsch T, Koyama E, Liu M, Golub EE, Pacifici M (2002) Syndecan-3 is a selective regulator of chondrocyte proliferation. J Biol Chem 277:42171–42177PubMedCrossRefGoogle Scholar
  28. Kjellen L, Lindahl U (1991) Proteoglycans: structures and interactions. Annu Rev Biochem 60:443–475PubMedCrossRefGoogle Scholar
  29. Koyama E, Leatherman JL, Shimazu A, Nah HD, Pacifici M (1995) Syndecan-3, tenascin-C, and the development of cartilaginous skeletal elements and joints in chick limbs. Dev Dyn 203:152–162PubMedGoogle Scholar
  30. Koyama E, Shimazu A, Leatherman JL, Golden EB, Nah HD, Pacifici M (1996) Expression of syndecan-3 and tenascin-C: possible involvement in periosteum development. J Orthop Res 14:403–412PubMedCrossRefGoogle Scholar
  31. Li Z, Yasuda Y, Li W, Bogyo M, Katz N, Gordon RE, Fields GB, Bromme D (2004) Regulation of collagenase activities of human cathepsins by glycosaminoglycans. J Biol Chem 279:5470–5479PubMedCrossRefGoogle Scholar
  32. Lin X, Perrimon N (2002) Developmental roles of heparan sulfate proteoglycans in Drosophila. Glycoconj J 19:363–368PubMedCrossRefGoogle Scholar
  33. Lindahl U, Thunberg L, Backstrom G, Riesenfeld J, Nordling K, Bjork I (1984) Extension and structural variability of the antithrombin-binding sequence in heparin. J Biol Chem 259:12368–12376PubMedGoogle Scholar
  34. Morko JP, Soderstrom M, Saamanen AM, Salminen HJ, Vuorio EI (2004) Up regulation of cathepsin K expression in articular chondrocytes in a transgenic mouse model for osteoarthritis. Ann Rheum Dis 63:649–655PubMedCrossRefGoogle Scholar
  35. Nakase T, Kaneko M, Tomita T, Myoui A, Ariga K, Sugamoto K, Uchiyama Y, Ochi T, Yoshikawa H (2000) Immunohistochemical detection of cathepsin D, K, and L in the process of endochondral ossification in the human. Histochem Cell Biol 114:21–27PubMedGoogle Scholar
  36. Nicole S, Davoine CS, Topaloglu H, Cattolico L, Barral D, Beighton P, Hamida CB, Hammouda H, Cruaud C, White PS, Samson D, Urtizberea JA, Lehmann-Horn F, Weissenbach J, Hentati F, Fontaine B (2000) Perlecan, the major proteoglycan of basement membranes, is altered in patients with Schwartz-Jampel syndrome (chondrodystrophic myotonia). Nat Genet 26:480–483PubMedCrossRefGoogle Scholar
  37. Nishida K, Inoue H, Toda K, Murakami T (1995) Localization of the glycosaminoglycans in the synovial tissues from osteoarthritic knees. Acta Med Okayama 49:287–294PubMedGoogle Scholar
  38. Nogami K, Suzuki H, Habuchi H, Ishiguro N, Iwata H, Kimata K (2004) Distinctive expression patterns of heparan sulfate O-sulfotransferases and regional differences in heparan sulfate structure in chick limb buds. J Biol Chem 279:8219–8229PubMedCrossRefGoogle Scholar
  39. Perrimon N, Bernfield M (2000) Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404:725–728PubMedCrossRefGoogle Scholar
  40. Pilia G, Hughes-Benzie RM, MacKenzie A, Baybayan P, Chen EY, Huber R, Neri G, Cao A, Forabosco A, Schlessinger D (1996) Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet 12:241–247PubMedCrossRefGoogle Scholar
  41. Princivalle M, de Agostini A (2002) Developmental roles of heparan sulfate proteoglycans: a comparative review in Drosophila, mouse and human. Int J Dev Biol 46:267–278PubMedGoogle Scholar
  42. Rantakokko J, Aro HT, Savontaus M, Vuorio E (1996) Mouse cathepsin K: cDNA cloning and predominant expression of the gene in osteoclasts, and in some hypertrophying chondrocytes during mouse development. FEBS Lett 393:307–313PubMedCrossRefGoogle Scholar
  43. Ruoslahti E, Yamaguchi Y (1991) Proteoglycans as modulators of growth factor activities. Cell 64:867–869PubMedCrossRefGoogle Scholar
  44. Salmivirta M, Lidholt K, Lindahl U (1996) Heparan sulfate: a piece of information. Faseb J 10:1270–1279PubMedGoogle Scholar
  45. Sedita J, Izvolsky K, Cardoso WV (2004) Differential expression of heparan sulfate 6-O-sulfotransferase isoforms in the mouse embryo suggests distinctive roles during organogenesis. Dev Dyn 231:782–794PubMedCrossRefGoogle Scholar
  46. Seghatoleslami MR, Kosher RA (1996) Inhibition of in vitro limb cartilage differentiation by syndecan-3 antibodies. Dev Dyn 207:114–119PubMedCrossRefGoogle Scholar
  47. Shimazu A, Nah HD, Kirsch T, Koyama E, Leatherman JL, Golden EB, Kosher RA, Pacifici M (1996) Syndecan-3 and the control of chondrocyte proliferation during endochondral ossification. Exp Cell Res 229:126–136PubMedCrossRefGoogle Scholar
  48. Shworak NW, HajMohammadi S, de Agostini AI, Rosenberg RD (2002) Mice deficient in heparan sulfate 3-O-sulfotransferase-1: normal hemostasis with unexpected perinatal phenotypes. Glycoconj J 19:355–361PubMedCrossRefGoogle Scholar
  49. Tesche F, Miosge N (2004) Perlecan in late stages of osteoarthritis of the human knee joint. Osteoarthritis Cartilage 12:852–862PubMedCrossRefGoogle Scholar
  50. van Kuppevelt TH, Dennissen MA, van Venrooij WJ, Hoet RM, Veerkamp JH (1998) Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology. Further evidence for heparan sulfate heterogeneity in the kidney. J Biol Chem 273:12960–12966PubMedCrossRefGoogle Scholar
  51. Zak BM, Crawford BE, Esko JD (2002) Hereditary multiple exostoses and heparan sulfate polymerization. Biochim Biophys Acta 1573:346–355PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Ronald R. GomesJr
    • 1
    • 3
  • Toin H. Van Kuppevelt
    • 2
  • Mary C. Farach-Carson
    • 1
  • Daniel D. Carson
    • 1
  1. 1.Department of Biological SciencesUniversity of Delaware NewarkNewarkUSA
  2. 2.Department of BiochemistryUniversity Medical Center, NCMLSNijmegenThe Netherlands
  3. 3.Department of Orthopaedics and RehabilitationPenn State College of Medicine HersheyHersheyUSA

Personalised recommendations