Advertisement

Histochemistry and Cell Biology

, Volume 126, Issue 3, pp 305–316 | Cite as

Perturbation of endothelial junction proteins by Staphylococcus aureus α-toxin: inhibition of endothelial gap formation by adrenomedullin

  • Andreas C. Hocke
  • Bettina Temmesfeld-Wollbrueck
  • Bernd Schmeck
  • Katharina Berger
  • Eckehard M. Frisch
  • Martin Witzenrath
  • Bernhard Brell
  • Norbert Suttorp
  • Stefan HippenstielEmail author
Original Paper

Abstract

Endothelial hyperpermeability is a hallmark of an inflammatory reaction and contributes to tissue damage in severe infections. Loss of endothelial cell–cell adhesion leads to intercellular gap formation allowing paracellular fluid flux. Although Staphylococcus aureus α-toxin significantly contributed to staphylococci disease, little is known about its mechanism of endothelial hyperpermeability induction. Here, we demonstrate that in a model of isolated perfused rat ileum discontinuation of capillary vascular-endothelial-cadherin (VE-cadherin) was observed after bolus application of S. aureus α-toxin being inhibited by the endogenous peptide adrenomedullin (ADM). In vitro, α-toxin exposure induced loss of immunoreactivity of VE-cadherin and occludin in human cultured umbilical vein endothelial cells. Likewise, ADM blocked α-toxin-related junctional protein disappearance from intercellular sites. Additionally, cyclic AMP elevation was shown to stabilize endothelial barrier function after α-toxin application. Although no RhoA activation was noted after endothelial α-toxin exposure, inhibition of Rho kinase and myosin light chain kinase blocked loss of immunoreactivity of VE-cadherin and occludin as well as intercellular gap formation. In summary, stabilization of endothelial junctional integrity as indicated by interendothelial immunostaining might be an interesting approach to stabilize endothelial barrier function in severe S. aureus infections.

Keywords

Adrenomedullin S. aureus α-toxin Junctions HUVECs Permeability 

Notes

Acknowledgments

Contract grant sponsor: Deutsche Forschungsgemeinschaft (DFG). Contract grant number: SSP 1130; HI 789/5-1. Contract grant sponsor: Bundesministerium für Bildung und Forschung (BMBF), Competence Network CAPNETZ C14, C4. Contract grant sponsor: Charité—Universitätsmedizin Berlin, Rahel-Hirsch award. Parts of this work will be included in the M.D. thesis of K. Berger. We thank K. Moehr, S. Wagner and J. Hellwig for excellent technical assistance. We thank Jerrold R. Turner, M.D., Ph.D., Department of Pathology of the University of Chicago, South Maryland for the friendly gift of the MLCK inhibitor PIK.

References

  1. Adamson RH, Curry FE, Adamson G, Liu B, Jiang Y, Aktories K, Barth H, Daigeler A, Golenhofen N, Ness W, Drenckhahn D (2002) Rho and rho kinase modulation of barrier properties: cultured endothelial cells and intact microvessels of rats and mice. J Physiol 539:295–308CrossRefPubMedGoogle Scholar
  2. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310PubMedCrossRefGoogle Scholar
  3. Baldwin AL, Thurston G (2001) Mechanics of endothelial cell architecture and vascular permeability. Crit Rev Biomed Eng 29:247–278PubMedGoogle Scholar
  4. Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84:869–901CrossRefPubMedGoogle Scholar
  5. Bhakdi S, Tranum-Jensen J (1991) Alpha-toxin of Staphylococcus aureus. Microbiol Rev 55:733–751PubMedGoogle Scholar
  6. Bhakdi S, Bayley H, Valeva A, Walev I, Walker B, Kehoe M, Palmer M (1996) Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins. Arch Microbiol 165:73–79CrossRefPubMedGoogle Scholar
  7. Birukova AA, Smurova K, Birukov KG, Kaibuchi K, Garcia JG, Verin AD (2004) Role of Rho GTPases in thrombin-induced lung vascular endothelial cells barrier dysfunction. Microvasc Res 67:64–77CrossRefPubMedGoogle Scholar
  8. Bogatcheva NV, Garcia JG, Verin AD (2002) Molecular mechanisms of thrombin-induced endothelial cell permeability. Biochemistry (Mosc) 67:75–84CrossRefGoogle Scholar
  9. Brell B, Temmesfeld-Wollbruck B, Altzschner I, Frisch E, Schmeck B, Hocke AC, Suttorp N, Hippenstiel S (2005) Adrenomedullin reduces Staphylococcus aureus alpha-toxin-induced rat ileum microcirculatory damage. Crit Care Med 33:819–826CrossRefPubMedGoogle Scholar
  10. Carbajal JM, Gratrix ML, Yu CH, Schaeffer RC Jr (2000) ROCK mediates thrombin’s endothelial barrier dysfunction. Am J Physiol Cell Physiol 279:C195–C204PubMedGoogle Scholar
  11. Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, Balconi G, Spagnuolo R, Oostuyse B, Dewerchin M, Zanetti A, Angellilo A, Mattot V, Nuyens D, Lutgens E, Clotman F, de Ruiter MC, Gittenberger-de Groot A, Poelmann R, Lupu F, Herbert JM, Collen D, Dejana E (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157CrossRefPubMedGoogle Scholar
  12. Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani MG, Martin-Padura I, Stoppacciaro A, Ruco L, McDonald DM, Ward PA, Dejana E (1999) Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci USA 96:9815–9820CrossRefPubMedGoogle Scholar
  13. Essler M, Amano M, Kruse HJ, Kaibuchi K, Weber PC, Aepfelbacher M (1998) Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells. J Biol Chem 273:21867–21874CrossRefPubMedGoogle Scholar
  14. Fowler DE, Wang P (2002) The cardiovascular response in sepsis: proposed mechanisms of the beneficial effect of adrenomedullin and its binding protein (review). Int J Mol Med 9:443–449PubMedGoogle Scholar
  15. Fowler DE, Yang S, Zhou M, Chaudry IH, Simms HH, Wang P (2003) Adrenomedullin and adrenomedullin binding protein-1: their role in the septic response. J Surg Res 109:175–181CrossRefPubMedGoogle Scholar
  16. Garcia JG, Davis HW, Patterson CE (1995) Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J Cell Physiol 163:510–522CrossRefPubMedGoogle Scholar
  17. Garcia JG, Verin AD, Schaphorst KL (1996) Regulation of thrombin-mediated endothelial cell contraction and permeability. Semin Thromb Hemost 22:309–315PubMedCrossRefGoogle Scholar
  18. van Hinsbergh VW, Nieuw Amerongen GP (2002) Intracellular signalling involved in modulating human endothelial barrier function. J Anat 200:549–560CrossRefPubMedGoogle Scholar
  19. Hippenstiel S, Schmeck B, N’Guessan PD, Seybold J, Krull M, Preissner K, Eichel-Streiber CV, Suttorp N (2002a) Rho protein inactivation induced apoptosis of cultured human endothelial cells. Am J Physiol Lung Cell Mol Physiol 283:L830–L838Google Scholar
  20. Hippenstiel S, Witzenrath M, Schmeck B, Hocke A, Krisp M, Krull M, Seybold J, Seeger W, Rascher W, Schutte H, Suttorp N (2002b) Adrenomedullin reduces endothelial hyperpermeability. Circ Res 91:618–625CrossRefGoogle Scholar
  21. Hirata Y, Mitaka C, Sato K, Nagura T, Tsunoda Y, Amaha K, Marumo F (1996) Increased circulating adrenomedullin, a novel vasodilatory peptide, in sepsis. J Clin Endocrinol Metab 81:1449–1453CrossRefPubMedGoogle Scholar
  22. Kernodle DS, Voladri RK, Menzies BE, Hager CC, Edwards KM (1997) Expression of an antisense hla fragment in Staphylococcus aureus reduces alpha-toxin production in vitro and attenuates lethal activity in a murine model. Infect Immun 65:179–184PubMedGoogle Scholar
  23. Kis B, Snipes JA, Deli MA, Abraham CS, Yamashita H, Ueta Y, Busija DW (2003) Chronic adrenomedullin treatment improves blood–brain barrier function but has no effects on expression of tight junction proteins. Acta Neurochir Suppl 86:565–568PubMedGoogle Scholar
  24. Krull M, Dold C, Hippenstiel S, Rosseau S, Lohmeyer J, Suttorp N (1996) Escherichia coli hemolysin and Staphylococcus aureas alpha-toxin potently induce neutrophil adhesion to cultured human endothelial cells. J Immunol 157:4133–4140PubMedGoogle Scholar
  25. Lum H, Malik AB (1994) Regulation of vascular endothelial barrier function. Am J Physiol 267:L223–L241PubMedGoogle Scholar
  26. Lush CW, Kvietys PR (2000) Microvascular dysfunction in sepsis. Microcirculation 7:83–101CrossRefPubMedGoogle Scholar
  27. Mehta D, Rahman A, Malik AB (2001) Protein kinase C-alpha signals rho-guanine nucleotide dissociation inhibitor phosphorylation and rho activation and regulates the endothelial cell barrier function. J Biol Chem 276:22614–22620CrossRefPubMedGoogle Scholar
  28. Nieuw Amerongen GP, van Delft S, Vermeer MA, Collard JG, van Hinsbergh VW (2000) Activation of RhoA by thrombin in endothelial hyperpermeability: role of Rho kinase and protein tyrosine kinases. Circ Res 87:335–340PubMedGoogle Scholar
  29. Patel AH, Nowlan P, Weavers ED, Foster T (1987) Virulence of protein A-deficient and alpha-toxin-deficient mutants of Staphylococcus aureus isolated by allele replacement. Infect Immun 55:3103–3110PubMedGoogle Scholar
  30. Rabiet MJ, Plantier JL, Rival Y, Genoux Y, Lampugnani MG, Dejana E (1996) Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arterioscler Thromb Vasc Biol 16:488–496PubMedGoogle Scholar
  31. Sandoval R, Malik AB, Minshall RD, Kouklis P, Ellis CA, Tiruppathi C (2001) Ca(2+) signalling and PKCalpha activate increased endothelial permeability by disassembly of VE-cadherin junctions. J Physiol 533:433–445CrossRefPubMedGoogle Scholar
  32. Satpathy M, Gallagher P, Lizotte-Waniewski M, Srinivas SP (2004) Thrombin-induced phosphorylation of the regulatory light chain of myosin II in cultured bovine corneal endothelial cells. Exp Eye Res 79:477–486CrossRefPubMedGoogle Scholar
  33. Seeger W, Birkemeyer RG, Ermert L, Suttorp N, Bhakdi S, Duncker HR (1990) Staphylococcal alpha-toxin-induced vascular leakage in isolated perfused rabbit lungs. Lab Invest 63:341–349PubMedGoogle Scholar
  34. Seybold J, Thomas D, Witzenrath M, Boral S, Hocke AC, Burger A, Hatzelmann A, Tenor H, Schudt C, Krull M, Schutte H, Hippenstiel S, Suttorp N (2005) Tumor necrosis factor-alpha-dependent expression of phosphodiesterase 2: role in endothelial hyperpermeability. Blood 105:3569–3576CrossRefPubMedGoogle Scholar
  35. Shindo T, Kurihara H, Maemura K, Kurihara Y, Kuwaki T, Izumida T, Minamino N, Ju KH, Morita H, Oh-hashi Y, Kumada M, Kangawa K, Nagai R, Yazaki Y (2000) Hypotension and resistance to lipopolysaccharide-induced shock in transgenic mice overexpressing adrenomedullin in their vasculature. Circulation 101:2309–2316PubMedGoogle Scholar
  36. Sibelius U, Grandel U, Buerke M, Mueller D, Kiss L, Kraemer HJ, Braun-Dullaeus R, Haberbosch W, Seeger W, Grimminger F (2000) Staphylococcal alpha-toxin provokes coronary vasoconstriction and loss in myocardial contractility in perfused rat hearts: role of thromboxane generation. Circulation 101:78–85PubMedGoogle Scholar
  37. Sista RR, Oda G, Barr J (2004) Methicillin-resistant Staphylococcus aureus infections in ICU patients. Anesthesiol Clin North America 22:405–35, viCrossRefPubMedGoogle Scholar
  38. Stasek JE Jr, Garcia JG (1992) The role of protein kinase C in alpha-thrombin-mediated endothelial cell activation. Semin Thromb Hemost 18:117–125PubMedGoogle Scholar
  39. Stevens T, Garcia JG, Shasby DM, Bhattacharya J, Malik AB (2000) Mechanisms regulating endothelial cell barrier function. Am J Physiol Lung Cell Mol Physiol 279:L419–L422PubMedGoogle Scholar
  40. Suttorp N, Seeger W, Dewein E, Bhakdi S, Roka L (1985) Staphylococcal alpha-toxin-induced PGI2 production in endothelial cells: role of calcium. Am J Physiol 248:C127–C134PubMedGoogle Scholar
  41. Suttorp N, Hessz T, Seeger W, Wilke A, Koob R, Lutz F, Drenckhahn D (1988) Bacterial exotoxins and endothelial permeability for water and albumin in vitro. Am J Physiol 255:C368–C376PubMedGoogle Scholar
  42. Suttorp N, Fuhrmann M, Tannert-Otto S, Grimminger F, Bhadki S (1993a) Pore-forming bacterial toxins potently induce release of nitric oxide in porcine endothelial cells. J Exp Med 178:337–341CrossRefGoogle Scholar
  43. Suttorp N, Weber U, Welsch T, Schudt C (1993b) Role of phosphodiesterases in the regulation of endothelial permeability in vitro. J Clin Invest 91:1421–1428CrossRefGoogle Scholar
  44. Suttorp N, Hippenstiel S, Fuhrmann M, Krull M, Podzuweit T (1996) Role of nitric oxide and phosphodiesterase isoenzyme II for reduction of endothelial hyperpermeability. Am J Physiol 270:C778–C785PubMedGoogle Scholar
  45. Tiruppathi C, Minshall RD, Paria BC, Vogel SM, Malik AB (2002) Role of Ca2+ signaling in the regulation of endothelial permeability. Vascul Pharmacol 39:173–185CrossRefPubMedGoogle Scholar
  46. Verin AD, Gilbert-McClain LI, Patterson CE, Garcia JG (1998) Biochemical regulation of the nonmuscle myosin light chain kinase isoform in bovine endothelium. Am J Respir Cell Mol Biol 19:767–776PubMedGoogle Scholar
  47. Verin AD, Birukova A, Wang P, Liu F, Becker P, Birukov K, Garcia JG (2001) Microtubule disassembly increases endothelial cell barrier dysfunction: role of MLC phosphorylation. Am J Physiol Lung Cell Mol Physiol 281:L565–L574PubMedGoogle Scholar
  48. Vincent PA, Xiao K, Buckley KM, Kowalczyk AP (2004) VE-cadherin: adhesion at arm’s length. Am J Physiol Cell Physiol 286:C987–C997CrossRefPubMedGoogle Scholar
  49. Waschke J, Drenckhahn D, Adamson RH, Curry FE (2004) Role of adhesion and contraction in Rac 1-regulated endothelial barrier function in vivo and in vitro. Am J Physiol Heart Circ Physiol 287:H704–H711CrossRefPubMedGoogle Scholar
  50. Wojciak-Stothard B, Ridley AJ (2002) Rho GTPases and the regulation of endothelial permeability. Vascul Pharmacol 39:187–199CrossRefPubMedGoogle Scholar
  51. Xiao K, Allison DF, Kottke MD, Summers S, Sorescu GP, Faundez V, Kowalczyk AP (2003) Mechanisms of VE-cadherin processing and degradation in microvascular endothelial cells. J Biol Chem 278:19199–19208CrossRefPubMedGoogle Scholar
  52. Yang S, Zhou M, Chaudry IH, Wang P (2002a) Novel approach to prevent the transition from the hyperdynamic phase to the hypodynamic phase of sepsis: role of adrenomedullin and adrenomedullin binding protein-1. Ann Surg 236:625–633CrossRefGoogle Scholar
  53. Yang S, Zhou M, Fowler DE, Wang P (2002b) Mechanisms of the beneficial effect of adrenomedullin and adrenomedullin-binding protein-1 in sepsis: down-regulation of proinflammatory cytokines. Crit Care Med 30:2729–2735CrossRefGoogle Scholar
  54. Yuan SY (2002) Protein kinase signaling in the modulation of microvascular permeability. Vascul Pharmacol 39:213–223CrossRefPubMedGoogle Scholar
  55. Zolotarevsky Y, Hecht G, Koutsouris A, Gonzalez DE, Quan C, Tom J, Mrsny RJ, Turner JR (2002) A membrane-permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology 123:163–172CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Andreas C. Hocke
    • 1
  • Bettina Temmesfeld-Wollbrueck
    • 1
  • Bernd Schmeck
    • 1
  • Katharina Berger
    • 1
  • Eckehard M. Frisch
    • 1
  • Martin Witzenrath
    • 1
  • Bernhard Brell
    • 1
  • Norbert Suttorp
    • 1
  • Stefan Hippenstiel
    • 1
    Email author
  1. 1.Department of Internal Medicine/Infectious and Pulmonary DiseasesCharité—Universitätsmedizin BerlinBerlinGermany

Personalised recommendations