Histochemistry and Cell Biology

, Volume 123, Issue 6, pp 631–637 | Cite as

Characterisation of disseminated tumor cells in the bone marrow of breast cancer patients by the Thomsen–Friedenreich tumor antigen

  • Christian Schindlbeck
  • Udo Jeschke
  • Sandra Schulze
  • Uwe Karsten
  • Wolfgang Janni
  • Brigitte Rack
  • Harald Sommer
  • Klaus Friese
Original Paper


The detection of disseminated tumor cells in the bone marrow (DTC-BM) of breast cancer patients has proved prognostic significance in all stages of the disease. Further characterisation of those cells could help to improve the biological understanding of metastases, develop targeted therapies and define surface markers for enrichment techniques. The Thomsen–Friedenreich (TF) antigen has been shown to be a tumor specific antigen in breast cancer. The aim of this study was to investigate the expression of TF on DTC-BM in 25 patients. Bone marrow samples were first double-stained by a Cy3 conjugated cytokeratin (CK) antibody (ab) A45 B/B3 (IgG) and anti-TF ab Nemod 2 (IgM), followed by Cy2 conjugated goat anti-mouse IgM ab. For further characterisation samples were also double-stained with anti-TF ab Nemod 2 (IgM), followed by Cy2 conjugated goat anti-mouse IgM ab, and anti MUC1 ab A76-A/C7 IgG, followed by Cy3 conjugated goat anti-mouse IgG. CK positive DTC-BM showed co-expression of TF antigen in 22/23 patients (96%) and 61 of 62 detected cells (98%). Mononuclear BM cells without CK expression were also negative for TF. All of the TF positive cells showed strong MUC1 expression. This is the first study showing co-expression of CK and TF as markers of DTC-BM. Double staining experiments of TF and MUC1 expression showed that MUC1 is the carrier protein of TF in these cells. As TF is a specific marker of DTC-BM, it could be used as a target for antibody based therapy and immunomagnetic enrichment techniques for the isolation of DTC-BM.


Breast cancer Disseminated tumor cells Bone marrow Minimal residual disease Thomsen–Friedenreich antigen MUC1 Prognosis Metastasis Therapy 



We thank Mrs. S. Kunze for excellent technical assistance.


  1. Baldus SE, Zirbes TK, Hanisch FG, Kunze D, Shafizadeh ST, Nolden S, Monig SP, Schneider PM, Karsten U, Thiele J, Holscher AH, Dienes HP (2000) Thomsen–Friedenreich antigen presents as a prognostic factor in colorectal carcinoma: a clinicopathologic study of 264 patients. Cancer 88:1536–1543CrossRefPubMedGoogle Scholar
  2. Barr N, Taylor CR, Young T, Springer GF (1989) Are pancarcinoma T and Tn differentiation antigens? Cancer 64:834–841PubMedGoogle Scholar
  3. Becker N (2001) Development of the incidence and mortality of breast cancer. Radiologie 41:337–343CrossRefGoogle Scholar
  4. Braun S, Hepp F, Kentenich CR, Janni W, Pantel K, Riethmuller G, Willgeroth F, Sommer HL (1999) Monoclonal antibody therapy with edrecolomab in breast cancer patients: monitoring of elimination of disseminated cytokeratin-positive tumor cells in bone marrow. Clin Cancer Res 5:3999–4004PubMedGoogle Scholar
  5. Braun S, Kentenich C, Janni W, Hepp F, de Waal J, Willgeroth F, Sommer H, Pantel K (2000a) Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J Clin Oncol 18:80–86PubMedGoogle Scholar
  6. Braun S, Pantel K, Muller P, Janni W, Hepp F, Kentenich CR, Gastroph S, Wischnik A, Dimpfl T, Kindermann G, Riethmuller G, Schlimok G (2000b) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342:525–533PubMedGoogle Scholar
  7. Braun S, Schlimok G, Heumos I, Schaller G, Riethdorf L, Riethmuller G, Pantel K (2001) ErbB2 overexpression on occult metastatic cells in bone marrow predicts poor clinical outcome of stage I-III breast cancer patients. Cancer Res 61:1890–1895PubMedGoogle Scholar
  8. Braun S, Vogl F, Schlimok G, Diel IJ, Coombes CR, Gerber B, Janni W, Gebauer G, Pantel K (2003) Pooled analysis of prognostic impact of occult metastatic cells (OMC) in bone marrow: 10-year survival of 3448 breast cancer patients. Proc Am Soc Clin Oncol (abstr 3402) 22:847Google Scholar
  9. Cao Y, Stosiek P, Springer GF, Karsten U (1996) Thomsen–Friedenreich-related carbohydrate antigens in normal adult human tissues: a systematic and comparative study. Histochem Cell Biol 106:197–207CrossRefPubMedGoogle Scholar
  10. Fisher B, Jeong JH, Anderson S, Bryant J, Fisher ER, Wolmark N (2002) Twenty-five-year follow-up of a randomized trial comparing radical mastectomy, total mastectomy, and total mastectomy followed by irradiation. N Engl J Med 347:567–575CrossRefPubMedGoogle Scholar
  11. Gebauer G, Fehm T, Merkle E, Beck EP, Lang N, Jager W (2001) Epithelial cells in bone marrow of breast cancer patients at time of primary surgery: clinical outcome during long-term follow-up. J Clin Oncol 19:3669–3674PubMedGoogle Scholar
  12. Gerber B, Krause A, Muller H, Richter D, Reimer T, Makovitzky J, Herrnring C, Jeschke U, Kundt G, Friese K (2001) Simultaneous immunohistochemical detection of tumor cells in lymph nodes and bone marrow aspirates in breast cancer and its correlation with other prognostic factors. J Clin Oncol 19:960–971PubMedGoogle Scholar
  13. Goletz S, Cao Y, Danielczyk A, Ravn P, Schoeber U, Karsten U (2003) Thomsen–Friedenreich antigen: the “hidden” tumor antigen. Adv Exp Med Biol 535:147–162PubMedGoogle Scholar
  14. Hirao T, Sakamoto Y, Kamada M, Hamada S, Aono T (1993) Tn antigen, a marker of potential for metastasis of uterine cervix cancer cells. Cancer 72:154–159PubMedGoogle Scholar
  15. Imai J, Ghazizadeh M, Naito Z, Asano G (2001) Immunohistochemical expression of T, Tn and sialyl-Tn antigens and clinical outcome in human breast carcinoma. Anticancer Res 21:1327–1334PubMedGoogle Scholar
  16. Janni W, Gastroph S, Hepp F, Kentenich C, Rjosk D, Schindlbeck C, Dimpfl T, Sommer H, Braun S (2000) Prognostic significance of an increased number of micrometastatic tumor cells in the bone marrow of patients with first recurrence of breast carcinoma. Cancer 88:2252–2259CrossRefPubMedGoogle Scholar
  17. Jeschke U, Richter DU, Hammer A, Briese V, Friese K, Karsten U (2002) Expression of the Thomsen–Friedenreich antigen and of its putative carrier protein mucin 1 in the human placenta and in trophoblast cells in vitro. Histochem Cell Biol 117:219–226CrossRefPubMedGoogle Scholar
  18. Karsten U, Butschak G, Cao Y, Goletz S, Hanisch FG (2004) A new monoclonal antibody (A78-G/A7) to the Thomsen–Friedenreich pan-tumor antigen. Hybridoma 14:37–44Google Scholar
  19. Kasper M, Stosiek P, Typlt H, Karsten U (1987) Histological evaluation of three new monoclonal anti-cytokeratin antibodies. 1. Normal tissues. Eur J Cancer Clin Oncol 23:137–147CrossRefPubMedGoogle Scholar
  20. Khaldoyanidi SK, Glinsky VV, Sikora L, Glinskii AB, Mossine VV, Quinn TP, Glinsky GV, Sriramarao P (2003) MDA-MB-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by Thomsen–Friedenreich antigen-galectin-3 interactions. J Biol Chem 278:4127–4134CrossRefPubMedGoogle Scholar
  21. Klemi PJ, Parvinen I, Pylkkanen L, Kauhava L, Immonen-Raiha P, Rasanen O, Helenius H (2003) Significant improvement in breast cancer survival through population-based mammography screening. Breast 12:308–313CrossRefPubMedGoogle Scholar
  22. Landys K, Persson S, Kovarik J, Hultborn R, Holmberg E (1998) Prognostic value of bone marrow biopsy in operable breast cancer patients at the time of initial diagnosis: results of a 20-year median follow-up. Breast Cancer Res Treat 49:27–33CrossRefPubMedGoogle Scholar
  23. Mansi JL, Gogas H, Bliss JM, Gazet JC, Berger U, Coombes RC (1999) Outcome of primary-breast-cancer patients with micrometastases: a long-term follow-up study. Lancet 354:197–202CrossRefPubMedGoogle Scholar
  24. Naume B, Borgen E, Beiske K, Herstad TK, Ravnas G, Renolen A, Trachsel S, Thrane-Steen K, Funderud S, Kvalheim G (1997) Immunomagnetic techniques for the enrichment and detection of isolated breast carcinoma cells in bone marrow and peripheral blood. J Hematother 6:103–114PubMedGoogle Scholar
  25. Pantel K, Braun S (2001) Molecular determinants of occult metastatic tumor cells in bone marrow. Clin Breast Cancer 2:222–228PubMedGoogle Scholar
  26. Pantel K, Schlimok G, Braun S, Kutter D, Lindemann F, Schaller G, Funke I, Izbicki JR, Riethmuller G (1993) Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst 85:1419–1424PubMedGoogle Scholar
  27. Pantel K, Muller V, Auer M, Nusser N, Harbeck N, Braun S (2003) Detection and clinical implications of early systemic tumor cell dissemination in breast cancer. Clin Cancer Res 9:6326–6334PubMedGoogle Scholar
  28. Price MR, Rye PD, Petrakou E, Murray A, Brady K, Imai S, Haga S, Kiyozuka Y, Schol D, Meulenbroek MF, Snijdewint FG, von Mensdorff-Pouilly S, Verstraeten RA, Kenemans P, Blockzjil A, Nilsson K, Nilsson O, Reddish M, Suresh MR, Koganty RR, Fortier S, Baronic L, Berg A, Longenecker MB, Hilgers J (1998) Summary report on the ISOBM TD-4 Workshop: analysis of 56 monoclonal antibodies against the MUC1 mucin. San Diego, Calif. 1998. Tumour Biol 19 (Suppl 1):1–20CrossRefGoogle Scholar
  29. van Rooijen JJ, Jeschke U, Kamerling JP, Vliegenthart JF (1998) Expression of N-linked sialyl Le(x) determinants and O-glycans in the carbohydrate moiety of human amniotic fluid transferrin during pregnancy. Glycobiology 8:1053–1064CrossRefPubMedGoogle Scholar
  30. Schindlbeck C, Janni W, Schaffer P, Shabani N, Schmitt M, Harbeck N, Sommer H, Braun S (2002) Tumor biology of primary breast cancer and minimal residual disease. Acta Med Austriaca 29(Suppl 59):27–31Google Scholar
  31. Schindlbeck C, Janni W, Shabani N, Rack B, Gerber B, Schmitt M, Harbeck N, Sommer H, Braun S, Friese K (2004) Comparative analysis between the HER2 status in primary breast cancer tissue and the detection of isolated tumor cells in the bone marrow. Breast Cancer Res Treat 87:65–74PubMedGoogle Scholar
  32. Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein TJ, Kaufmann M, Diebold J, Arnholdt H, Muller P, Bischoff J, Harich D, Schlimok G, Riethmuller G, Eils R, Klein CA (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA 100:7737–7742CrossRefPubMedGoogle Scholar
  33. Sloane JP, Ormerod MG, Neville AM (1980) Potential pathological application of immunocytochemical methods to the detection of micrometastases. Cancer Res 40:3079–3082PubMedGoogle Scholar
  34. Springer GF, Desai PR, Scanlon EF (1976) Blood group MN precursors as human breast carcinoma-associated antigens and “naturally” occurring human cytotoxins against them. Cancer 37:169–176PubMedGoogle Scholar
  35. Springer GF, Desai PR, Murthy MS (1978) Histochemical methods for the demonstration of Thomsen–Friedenreich antigen in cell suspensions and tissue sections. Klin Wochenschr 56:761–765CrossRefPubMedGoogle Scholar
  36. Takanami I (1999) Expression of Thomsen–Friedenreich antigen as a marker of poor prognosis in pulmonary adenocarcinoma. Oncol Rep 6:341–344PubMedGoogle Scholar
  37. Wiedswang G, Borgen E, Karesen R, Kvalheim G, Nesland JM, Qvist H, Schlichting E, Sauer T, Janbu J, Harbitz T, Naume B (2003) Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer. J Clin Oncol 21:3469–3478CrossRefPubMedGoogle Scholar
  38. Wolf MF, Ludwig A, Fritz P, Schumacher K (1988) Increased expression of Thomsen–Friedenreich antigens during tumor progression in breast cancer patients. Tumour Biol 9:190–194PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Christian Schindlbeck
    • 1
  • Udo Jeschke
    • 1
  • Sandra Schulze
    • 1
  • Uwe Karsten
    • 2
  • Wolfgang Janni
    • 1
  • Brigitte Rack
    • 1
  • Harald Sommer
    • 1
  • Klaus Friese
    • 1
  1. 1.First Department of Obstetrics and GynecologyLudwig Maximilians University of MunichMunichGermany
  2. 2.Max-Delbrück-Center for Molecular Medicine Berlin-BuchBerlin-BuchGermany

Personalised recommendations