Histochemistry and Cell Biology

, Volume 123, Issue 2, pp 117–130

Enteric co-innervation of motor endplates in the esophagus: state of the art ten years after



The existence of a distinct ganglionated myenteric plexus between the two layers of the striated tunica muscularis of the mammalian esophagus represented an enigma for quite a while. Although an enteric co-innervation of vagally innervated motor endplates in the esophagus has been repeatedly suggested, it was not possible until recently to demonstrate this dual innervation. Ten years ago, we were able to demonstrate that motor endplates in the rat esophagus receive a dual innervation from both vagal nerve fibers originating in the brain stem and from varicose enteric nerve fibers originating in the myenteric plexus. Since then, a considerable amount of data could be raised on enteric co-innervation and its occurrence in a variety of species, including humans, its neurochemistry, spatial relationships on motor endplates, ontogeny, and possible roles during esophageal peristalsis. These data underline the significance of this newly discovered innervation component, although its function is still largely unknown. The aim of this review is to summarize current knowledge about enteric co-innervation of esophageal striated muscle and to provide some hints as to its functional significance.


Esophagus innervation Peristalsis Enteric nervous system Striated muscle Deglutition 







acetylcholine receptor


nucleus ambiguus




calcitonin gene-related peptide


central subnucleus of the nucleus tractus solitarius



co rate

co-innervation rate




1,1′-dioleyl-3,3,3′,3′-tetramethylindocarbocyanine methane sulfonate


dorsal root ganglion


enzyme histochemistry


enteric nerve fibers






intraganglionic laminar endings






lower esophageal sphincter




muscarinic acetylcholine receptors

M1, M2

muscarinic acetylcholine receptor subtype M1 and M2




motor endplate


muscle fiber


myenteric ganglion




neurokinin A


nitric oxide


nodose ganglion


neuronal nitric oxide synthase


neuropeptide Y


pituitary adenylyl cyclase-activating (poly)peptide


swallowing center


soluble guanylyl cyclase


substance P

Tm-i, Tm-o

tunica muscularis, inner and outer muscle layer


tunica mucosa


tela submucosa


upper esophageal sphincter


vesicular acetylcholine transporter


vasoactive intestinal (poly)peptide


whole mounts


  1. Altschuler SM, Bao X, Bieger D, Hopkins DA, Miselis RR (1989) Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol 283:248–268PubMedGoogle Scholar
  2. Andrew BL (1956) The nervous control of the cervical oesophagus of the rat during swallowing. J Physiol 134:729–740Google Scholar
  3. Asmussen G (1974) Über einige Eigenschaften der quergestreiften Muskelfasern aus dem Ösophagus der Ratte. Ergeb Exp Med 15:301–307Google Scholar
  4. Barrett RT, Bao X, Miselis RR, Altschuler SM (1994) Brain stem localization of rodent esophageal premotor neurons revealed by transneuronal passage of pseudorabies virus. Gastroenterology 107:728–737Google Scholar
  5. Berthoud HR, Patterson LM, Willing AE, Mueller K, Neuhuber WL (1997) Capsaicin-resistant vagal afferent fibers in the rat gastrointestinal tract: anatomical identification and functional integrity. Brain Res 746:195–206CrossRefGoogle Scholar
  6. Beyer S, Wörl J, Neuhuber WL (1996) Nitrerge Co-Innervation von motorischen Endplatten im pharyngo-ösophagealen Übergang bei der Ratte. Ann Anat Suppl 178:344Google Scholar
  7. Bieger D (1993) The brainstem esophagomotor network pattern generator: a rodent model. Dysphagia 8:203–208Google Scholar
  8. Bieger D, Hopkins DA (1987) Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J Comp Neurol 262:546–562CrossRefGoogle Scholar
  9. Breuer C, Neuhuber WL, Wörl J (2004) Development of neuromuscular junctions in the mouse esophagus: morphology suggests a role for enteric co-innervation during maturation of vagal myoneural contacts. J Comp Neurol 475:47–69CrossRefGoogle Scholar
  10. Brookes SJ (2001) Classes of enteric nerve cells in the guinea-pig small intestine. Anat Rec 262:58–70CrossRefPubMedGoogle Scholar
  11. Bult H, Boeckxstaens GE, Pelckmans PA, Jordaens FH, Van Maercke YM, Herman AG (1990) Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature 345:346–347Google Scholar
  12. Cecio A (1976) Further histophysiological observations on the lower esophagus of the rabbit. Cell Tissue Res 168:475–488CrossRefGoogle Scholar
  13. Conklin JL, Christensen J (1994) Motor function of the pharynx and esophagus. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 903–928Google Scholar
  14. Cunningham ET, Jr., Sawchenko PE (1989) A circumscribed projection from the nucleus of the solitary tract to the nucleus ambiguus in the rat: anatomical evidence for somatostatin-28-immunoreactive interneurons subserving reflex control of esophageal motility. J Neurosci 9:1668–1682Google Scholar
  15. Cunningham ETJ, Sawchenko PE (1990) Central neural control of esophageal motility: a review. Dysphagia 5:35–51Google Scholar
  16. De Laet A, Adriaensen D, Van Bogaert PP, Scheuermann DW, Timmermans JP (2002a) Immunohistochemical localization of voltage-activated calcium channels in the rat oesophagus. Neurogastroenterol Motil 14:173–181Google Scholar
  17. De Laet A, Cornelissen W, Adriaensen D, Van Bogaert PP, Scheuermann DW, Timmermans JP (2002b) Ca2+ involvement in the action potential generation of myenteric neurones in the rat oesophagus. Neurogastroenterol Motil 14:161–172Google Scholar
  18. Dütsch M, Eichhorn U, Wörl J, Wank M, Berthoud HR, Neuhuber WL (1998) Vagal and spinal afferent innervation of the rat esophagus: a combined retrograde tracing and immunocytochemical study with special emphasis on calcium-binding proteins. J Comp Neurol 398:289–307CrossRefPubMedGoogle Scholar
  19. Evans AA, Smith ME (1996) Distribution of opioid peptide receptors in muscles of lean and obese-diabetic mice. Peptides 17:629–634CrossRefGoogle Scholar
  20. Evans AA, Smith ME (2004) Opioid receptors in fast and slow skeletal muscles of normal and dystrophic mice. Neurosci Lett 366:339–341CrossRefGoogle Scholar
  21. Floyd K (1973) Cholinesterase activity in sheep oesophageal muscle. J Anat 116:357–373Google Scholar
  22. Friebe A, Koesling D (2003) Regulation of nitric oxide-sensitive guanylyl cyclase. Circ Res 93:96–105CrossRefGoogle Scholar
  23. Furness JB (2000) Types of neurons in the enteric nervous system. J Auton Nerv Syst 81:87–96CrossRefPubMedGoogle Scholar
  24. Geboes K, Desmet V (1978) Histology of the esophagus. Front Gastrointest Res 3:1–17Google Scholar
  25. Gibson A, Mirzazadeh S, Hobbs AJ, Moore PK (1990) L-NG-monomethyl arginine and L-NG-nitro arginine inhibit non-adrenergic, non-cholinergic relaxation of the mouse anococcygeus muscle. Br J Pharmacol 99:602–606Google Scholar
  26. Goetsch E (1910) The structure of the mammalian oesophagus. Am J Anat 10:1–40Google Scholar
  27. Grinnell AD (1995) Dynamics of nerve-muscle interaction in developing and mature neuromuscular junctions. Physiol Rev 75:789–834Google Scholar
  28. Gruber H (1968) Über die Struktur und Innervation der quergestreiften Muskulatur des Ösophagus der Ratte. Z Zellforsch 91:236–247CrossRefGoogle Scholar
  29. Gruber H (1978) Motor innervation of the striated oesophagus muscle. Part 1. Intramural distribution of the right and left vagus nerve in the rat esophagus as revealed by the glycogen depletion technique. J Neurol Sci 36:41–53Google Scholar
  30. Hall ZW, Sanes JR (1993) Synaptic Structure and Development: The Neuromuscular Junction. Cell 72:99–121Google Scholar
  31. Hebeiss K, Kilbinger H (1999) Cholinergic and GABAergic regulation of nitric oxide synthesis in the guinea pig ileum. Am J Physiol 276:G862–866Google Scholar
  32. Hisa Y, Tadaki N, Uno T, Koike S, Tanaka M, Okamura H, Ibata Y (1996) Nitrergic innervation of the rat larynx measured by nitric oxide synthase immunohistochemistry and NADPH-diaphorase histochemistry. Ann Otol Rhinol Laryngol 105:550–554Google Scholar
  33. Holzer P (1988) Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24:739–768CrossRefPubMedGoogle Scholar
  34. Holzer P, Holzer-Petsche U (1997a) Tachykinins in the gut. Part I. Expression, release and motor function. Pharmacol Ther 73:173–217Google Scholar
  35. Holzer P, Holzer-Petsche U (1997b) Tachykinins in the gut. Part II. Roles in neural excitation, secretion and inflammation. Pharmacol Ther 73:219–263Google Scholar
  36. Holzer P, Schluet W, Lippe IT, Sametz W (1987) Involvement of capsaicin-sensitive sensory neurons in gastrointestinal function. Acta Physiol Hung 69:403–411Google Scholar
  37. Hudson LC (1993) Histochemical identification of the striated muscle of the canine esophagus. Anat Histol Embryol 22:101–104Google Scholar
  38. Izumi N, Matsuyama H, Yamamoto Y, Atoji Y, Suzuki Y, Unno T, Takewaki T (2002) Morphological and morphometrical characteristics of the esophageal intrinsic nervous system in the golden hamster. Eur J Morphol 40:137–144CrossRefGoogle Scholar
  39. Izumi N, Matsuyama H, Ko M, Shimizu Y, Takewaki T (2003) Role of intrinsic nitrergic neurones on vagally mediated striated muscle contractions in the hamster oesophagus. J Physiol 551:287–294PubMedGoogle Scholar
  40. Jean A (2001) Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev 81:929–969PubMedGoogle Scholar
  41. Jurica EJ (1926) Studies on the motility of the denervated mammalian esophagus. Am J Physiol 77:371–384Google Scholar
  42. Kablar B, Tajbakhsh S, Rudnicki MA (2000) Transdifferentiation of esophageal smooth to skeletal muscle is myogenic bHLH factor-dependent. Development 127:1627–1639Google Scholar
  43. Kaufmann P, Lierse W, Stark J, Stelzner F (1968) Die Muskelanordnung in der Speiseröhre. Ergeb Anat Entwicklungsgesch 40:5–34Google Scholar
  44. Kobler JB, Datta S, Goyal RK, Benecchi EJ (1994) Innervation of the larynx, pharynx, and upper esophageal sphincter of the rat. J Comp Neurol 349:129–147CrossRefGoogle Scholar
  45. Koesling D, Russwurm M, Mergia E, Mullershausen F, Friebe A (2004) Nitric oxide-sensitive guanylyl cyclase: structure and regulation. Neurochem Res 45:813–819CrossRefGoogle Scholar
  46. Kressel M, Radespiel-Tröger M (1999) Anterograde tracing and immunohistochemical characterization of potentially mechanosensitive vagal afferents in the esophagus. J Comp Neurol 412:161–172CrossRefPubMedGoogle Scholar
  47. Kuhn M (2003) Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res 93:700–709CrossRefGoogle Scholar
  48. Kuramoto H, Endo Y (1995) Galanin-immunoreactive nerve terminals innervating the striated muscle fibers of the rat esophagus. Neurosci Lett 188:171–174CrossRefGoogle Scholar
  49. Kuramoto H, Kato Y, Sakamoto H, Endo Y (1996) Galanin-containing nerve terminals that are involved in a dual innervation of the striated muscles of the rat esophagus. Brain Res 734:186–192CrossRefGoogle Scholar
  50. Kuramoto H, Kawano H, Sakamoto H, Furness JB (1999) Motor innervation by enteric nerve fibers containing both nitric oxide synthase and galanin immunoreactivities in the striated muscle of the rat esophagus. Cell Tissue Res 295:241–245CrossRefGoogle Scholar
  51. Kuramoto H, Oomori Y, Murabayashi H, Kadowaki M, Karaki S, Kuwahara A (2004) Localization of neurokinin 1 receptor (NK1R) immunoreactivity in rat esophagus. J Comp Neurol 478:11–21CrossRefGoogle Scholar
  52. Lang IM, Shaker R (2000) An overview of the upper esophageal sphincter. Curr Gastroenterol Rep 2:185–190Google Scholar
  53. Lanzafame AA, Christopoulos A, Mitchelson F (2003) Cellular signaling mechanisms for muscarinic acetylcholine receptors. Receptors Channels 9:241–260CrossRefGoogle Scholar
  54. Lu WY, Bieger D (1998) Vagovagal reflex motility patterns of the rat esophagus. Am J Physiol 274:R1425-R1435Google Scholar
  55. Mascarello F, Rowlerson A, Scapolo PA (1984) The fibre type composition of the striated muscle of the oesophagus in ruminants and carnivores. Histochemistry 80:277–288CrossRefGoogle Scholar
  56. Mazzia C, Clerc N (1997) Ultrastructural relationships of spinal primary afferent fibers with neuronal and non-neuronal cells in the myenteric plexus of the cat esophago-gastric junction. Neuroscience 80:925–937CrossRefGoogle Scholar
  57. Meier T, Wallace BG (1998) Formation of the neuromuscular junction: molecules and mechanisms. Bioessays 20:819–29CrossRefGoogle Scholar
  58. Meltzer SJ (1899) On the causes of the orderly progress of the peristaltic movements in the oesophagus. Am J Physiol 2:266–272Google Scholar
  59. Meyer GW, Austin RM, Brady CE, Castell DO (1986) Muscle anatomy of the human esophagus. J Clin Gastroenterol 8:131–134Google Scholar
  60. Minic J, Molgo J, Karlsson E, Krejci E (2002) Regulation of acetylcholine release by muscarinic receptors at the mouse neuromuscular junction depends on the activity of acetylcholinesterase. Eur J Neurosci 15:439–448CrossRefGoogle Scholar
  61. Morikawa S, Komuro T (1998) Distribution of myenteric NO neurons along the guinea-pig esophagus. J Auton Nerv Syst 74:91–99CrossRefGoogle Scholar
  62. Neuhuber WL (1987) Sensory vagal innervation of the rat esophagus and cardia: a light and electron microscopic anterograde tracing study. J Auton Nerv Syst 20:243–255CrossRefPubMedGoogle Scholar
  63. Neuhuber WL, Wörl J, Berthoud H-R, Conte B (1994) NADPH-diaphorase-positive nerve fibers associated with motor endplates in the rat esophagus: new evidence for co-innervation of striated muscle by enteric neurons. Cell Tissue Res 276:23–30PubMedGoogle Scholar
  64. Neuhuber WL, Kressel M, Stark A, Berthoud HR (1998) Vagal efferent and afferent innervation of the rat esophagus as demonstrated by anterograde DiI and DiA tracing: focus on myenteric ganglia. J Auton Nerv Syst 70:92–102CrossRefPubMedGoogle Scholar
  65. Neuhuber WL, Eichhorn U, Wörl J (2001) Enteric co-innervation of striated muscle fibers in the esophagus: just a “hangover”? Anat Rec 262:41–46Google Scholar
  66. Oppel A (1897) Lehrbuch der vergleichenden mikroskopischen Anatomie der Wirbeltiere. Vol. 2, Fischer Verlag, JenaGoogle Scholar
  67. Patapoutian A, Wold BJ, Wagner RA (1995) Evidence for developmentally programmed transdifferentiation in mouse esophageal muscle. Science 270:1818–1820Google Scholar
  68. Peghini PL, Pursnani KG, Gideon MR, Castell JA, Nierman J, Castell DO (1998) Proximal and distal esophageal contractions have similar manometric features. Am J Physiol 274:G325-G330Google Scholar
  69. Raab M, Neuhuber WL (2003) Vesicular glutamate transporter 2 immunoreactivity in putative vagal mechanosensor terminals of mouse and rat esophagus: indication of a local effector function? Cell Tissue Res 312:141–148PubMedGoogle Scholar
  70. Raab M, Neuhuber WL (2004) Intraganglionic laminar endings and their relationships with neuronal and glial structures of myenteric ganglia in the esophagus of rat and mouse. Histochem Cell Biol 122:445–459CrossRefGoogle Scholar
  71. Reddy T, Kablar B (2004) Evidence for the involvement of neurotrophins in muscle transdifferentiation and acetylcholine receptor transformation in the esophagus of Myf5(-/-):MyoD(-/-) and NT-3(-/-) embryos. Dev Dyn 231:683–692CrossRefGoogle Scholar
  72. Redfern PA (1970) Neuromuscular transmission in new-born rats. J Physiol 209:701–709Google Scholar
  73. Reichel B (1998) Die Coinnervation motorischer Endplatten im Ösophagus der Ratte durch VIP- und NPY-positive enterische Neuronen. Medizinische Dissertation, Universität Erlangen-NürnbergGoogle Scholar
  74. Reichel B, Wörl J, Neuhuber WL (1995) NPY-positive nerve fibers on motor endplates in the rat esophagus stain also for VIP and NADPH-diaphorase. J Anat 187:226Google Scholar
  75. Rishniw M, Xin HB, Deng KY, Kotlikoff MI (2003) Skeletal myogenesis in the mouse esophagus does not occur through transdifferentiation. Genesis 36:81–82CrossRefGoogle Scholar
  76. Rodrigo J, Hernandez J, Vidal MA, Pedrosa JA (1975) Vegetative innervation of the esophagus. II. Intraganglionic laminar endings. Acta Anat 92:79–100PubMedGoogle Scholar
  77. Rodrigo J, Polak JM, Fernandez L, Ghatei MA, Mulderry P, Bloom SR (1985) Calcitonin gene-related peptide immunoreactive sensory and motor nerves of the rat, cat, and monkey esophagus. Gastroenterology 88:444–451Google Scholar
  78. Rodrigo J, Uttenthal LO, Peinado MA, Esteban FJ, Fernández AP, Serrano J, Martínez de Velasco J, Santacana M, Bentura ML, Martínez-Murillo R, Pedrosa JA (1998) Distribution of nitric oxide synthase in the esophagus of the cat and monkey. J Auton Nerv Syst 70:164–179Google Scholar
  79. Roman C, Gonella J (1987) Extrinsic control of digestive tract motility. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 507–553Google Scholar
  80. Ross CA, Ruggiero DA, Reis DJ (1985) Projections from the nucleus tractus solitarii to the rostral ventrolateral medulla. J Comp Neurol 242:511–534Google Scholar
  81. Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22:389–442CrossRefPubMedGoogle Scholar
  82. Sanes JR, Lichtman JW (2001) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2:791–805Google Scholar
  83. Sang Q, Young HM (1997) Development of nicotinic receptor clusters and innervation accompanying the change in muscle phenotype in the mouse esophagus. J Comp Neurol 386:119–136CrossRefPubMedGoogle Scholar
  84. Sang Q, Ciampoli D, Greferath U, Sommer L, Young HM (1999) Innervation of the esophagus in mice that lack Mash-1. J Comp Neurol 408:1–10CrossRefGoogle Scholar
  85. Santafe MM, Salon I, Garcia N, Lanuza MA, Uchitel OD, Tomas J (2003) Modulation of ACh release by presynaptic muscarinic autoreceptors in the neuromuscular junction of the newborn and adult rat. Eur J Neurosci 17:119–127CrossRefGoogle Scholar
  86. Seibold R (1997) Vergleichende Anatomie der nitrergen Co-Innervation des Ösophagus. Medizinische Dissertation, Universität Erlangen-NürnbergGoogle Scholar
  87. Seibold R, Wörl J, Mayer B, Neuhuber WL (1994) NADPH-diaphorase/NO-Synthase-positive Nervenfasern an motorischen Endplatten der Ösophagusmuskulatur bei Maus, Meerschweinchen, Kaninchen und Schaf. Ann Anat Suppl 176:309Google Scholar
  88. Shedlofsky-Deschamps G, Krause WJ, Cutts JH, Hansen S (1982) Histochemistry of the striated musculature in the opossum and human oesophagus. J Anat 134:407–414Google Scholar
  89. Sivarao DV, Goyal RK (2000) Functional anatomy and physiology of the upper esophageal sphincter. Am J Med 108 Suppl 4a:27S-37SGoogle Scholar
  90. Sörensen B (2001) Vergleichende Anatomie der nitrergen Co-Innervation von quergestreifter Ösophagusmuskulatur bei verschiedenen Spezies einschließlich des Menschen. Medizinische Dissertation, Universität Erlangen-NürnbergGoogle Scholar
  91. Sörensen B, Neuhuber WL, Wörl J (1995) Nitrerge Co-Innervation motorischer Endplatten im Ösophagus bei Mensch und Schwein. Ann Anat Suppl 177:214Google Scholar
  92. Sterin-Borda L, Ganzinelli S, Berra A, Borda E (2003) Novel insight into the mechanisms involved in the regulation of the m1 muscarinic receptor, iNOS and nNOS mRNA levels. Neuropharmacology 45:260–269CrossRefGoogle Scholar
  93. Storr M, Geisler F, Neuhuber WL, Schusdziarra V, Allescher HD (2000) Endomorphin-1 and −2, endogenous ligands for the mu-opioid receptor, inhibit striated and smooth muscle contraction in the rat oesophagus. Neurogastroenterol Motil 12:441–448Google Scholar
  94. Storr M, Geisler F, Neuhuber WL, Schusdziarra V, Allescher HD (2001) Characterization of vagal input to the rat esophageal muscle. Auton Neurosci 91:1–9CrossRefGoogle Scholar
  95. Stratton CJ, Bayguinov Y, Sanders KM, Ward SM (2000) Ultrastructural analysis of the transdifferentiation of smooth muscle to skeletal muscle in the murine esophagus. Cell Tissue Res 301:283–298CrossRefGoogle Scholar
  96. Takaki M, Jin JG, Lu YF, Nakayama S (1990) Effects of piperine on the motility of the isolated guinea-pig ileum: comparison with capsaicin. Eur J Pharmacol 186:71–77CrossRefGoogle Scholar
  97. Tottrup A, Svane D, Forman A (1991) Nitric oxide mediating NANC inhibition in opossum lower esophageal sphincter. Am J Physiol 260:G385–389Google Scholar
  98. Toyama T, Yokoyama I, Nishi K (1975) Effects of hexamethonium and other ganglionic blocking agents on electrical activity of the esophagus induced by vagal stimulation in the dog. Eur J Pharmacol 31:63–71CrossRefGoogle Scholar
  99. Vietze S (2000) Postnatale Entwicklung der nitrergen Co-Innervation von motorischen Endplatten im Ösophagus der Ratte. Medizinische Dissertation, Universität Erlangen-NürnbergGoogle Scholar
  100. Vietze S, Neuhuber WL, Wörl J (1995) Postnatale Entwicklung der nitrergen Co-Innervation der quergestreiften Ösophagusmuskulatur bei der Ratte. Ann Anat Suppl 177:213Google Scholar
  101. Weisbrodt NW (1976) Neuromuscular organization of esophageal and pharyngeal motility. Arch Intern Med 136:524–531CrossRefGoogle Scholar
  102. Whitmore I (1982) Oesophageal striated muscle arrangement and histochemical fibre types in guinea-pig, marmoset, macaque and man. J Anat 134:685–695Google Scholar
  103. Wörl J, Neuhuber WL (2000) Spatial and temporal organization of TrkB expression in the developing musculature of the mouse esophagus. Histochem Cell Biol 114:229–238Google Scholar
  104. Wörl J, Mayer B, Neuhuber WL (1994) Nitrergic innervation of the rat esophagus: focus on motor endplates. J Auton Nerv Syst 49:227–233CrossRefGoogle Scholar
  105. Wörl J, Mayer B, Neuhuber WL (1997) Spatial relationships of enteric nerve fibers to vagal motor terminals and the sarcolemma in motor endplates of the rat esophagus. A confocal laser scanning and electron-microscopic study. Cell Tissue Res 287:113–118Google Scholar
  106. Wörl J, Fischer J, Neuhuber WL (1998) Nonvagal origin of galanin-containing nerve terminals innervating striated muscle fibers of the rat esophagus. Cell Tissue Res 292:453–461CrossRefPubMedGoogle Scholar
  107. Wörl J, Dütsch F, Neuhuber WL (2002) Development of neuromuscular junctions in the mouse esophagus: focus on establishment and reduction of enteric co-innervation. Anat Embryol 205:141–152CrossRefGoogle Scholar
  108. Wu M, Majewski M, Wojtkiewicz J, Vanderwinden JM, Adriaensen D, Timmermans JP (2003) Anatomical and neurochemical features of the extrinsic and intrinsic innervation of the striated muscle in the porcine esophagus: evidence for regional and species differences. Cell Tissue Res 311:289–297Google Scholar
  109. Zagorodnyuk VP, Brookes SJ (2000) Transduction sites of vagal mechanoreceptors in the guinea pig esophagus. J Neurosci 20:6249–6255PubMedGoogle Scholar
  110. Zagorodnyuk VP, Chen BN, Costa M, Brookes SJ (2003) Mechanotransduction by intraganglionic laminar endings of vagal tension receptors in the guinea-pig oesophagus. J Physiol 553:575–587CrossRefPubMedGoogle Scholar
  111. Zhao W, Dhoot GK (2000a) Both smooth and skeletal muscle precursors are present in foetal mouse oesophagus and they follow different differentiation pathways. Dev Dyn 218:587–602Google Scholar
  112. Zhao W, Dhoot GK (2000b) Development and composition of skeletal muscle fibres in mouse oesophagus. Journal of Muscle Research and Cell Motility 21:463–473Google Scholar
  113. Zhao W, Dhoot GK (2000c) Skeletal muscle precursors in mouse esophagus are determined during early fetal development. Dev Dyn 219:10–20CrossRefGoogle Scholar
  114. Zhou D-S, Desaki J, Komuro T (1996) Neuro-muscular junctions of longitudinal and circular muscle fibers of the guinea-pig esophagus and their relation to myenteric plexus. J Auton Nerv Syst 58:63–68CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Anatomy InstituteUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations