Histochemistry and Cell Biology

, Volume 125, Issue 5, pp 545–556 | Cite as

Cell death in trichomonads: new insights

  • Rafael M. Mariante
  • Ricardo G. Vancini
  • Marlene BenchimolEmail author


Tritrichomonas foetus is an amitochondriate parasite that possesses hydrogenosomes, unusual anerobic energy-producing organelles. In these organisms the “mitochondrial cell death machinery” is supposed to be absent, and the mechanisms that lead to cell demise remain to be elucidated. The presence of a cell death program in trichomonads has already been reported, suggesting the existence of a caspase-like execution pathway in such organisms. Here we demonstrate the alterations provoked by the fungicide griseofulvin and raise the possibility that other cell death pathways may exist in T. foetus. Dramatic changes in trichomonads morphology are presented after griseofulvin treatment, such as intense plasma membrane and nuclear envelope blebbing, nucleus fragmentation, and an abnormal number of oversized vacuoles. One important finding was the exposition of phosphatidylserine (PS) in the outer leaflet of the plasma membrane in cells after drug treatment, and also the presence of a high amount of misshapen flagella and tubulin precipitates as vacuolar contents, suggesting an autophagic process of abnormal cellular elements. Interestingly, immunoreactivity for activated caspase-3 was not detected during griseofulvin treatment, a finding distinct from the observed when this cell was treated with H2O2. The possibility of the existence of different pathways to cell death in trichomonads is discussed.


Tritrichomonas foetus Cell death Griseofulvin Hydrogenosomes 



Dimethyl sulfoxide


4′,6-diamidino-2-phenylindole dihydrochloride


Apoptosis-inducing factor


Caspase-activated DNase



This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Programa de Apoio a Núcleos de Excelência (PRONEX), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Associação Universitária Santa Úrsula (AUSU). The authors thank Dr. Keith Gull for the TAT-1 antibody and Dr. Anu Srinivasan for the CM1 antibody.


  1. Arnoult D, Tatischeff I, Estaquier J, Girard M, Sureau F, Tissier JP, Grodet A, Dellinger M, Traincard F, Kahn A, Ameisen JC, Petit PX, (2001) On the evolutionary conservation of the cell death pathway: mitochondrial release of an apoptosis-inducing factor during Dictyostelium discoideum cell death. Mol Biol Cell 12:3016–3030Google Scholar
  2. Arnoult D, Akarid K, Grodet A, Petit PX, Estaquier J, Ameisen JC (2002) On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization. Cell Death Differ 9:65–81Google Scholar
  3. Benchimol M (1999) Hydrogenosome autophagy: an ultrastructural and cytochemical study. Biol Cell 91:165–174Google Scholar
  4. Benchimol M (2001) Hydrogenosome morphological variation induced by fibronectin and other drugs in Trichomonas vaginalis and Tritrichomonas foetus. Parasitol Res 87:215–222Google Scholar
  5. Bera A, Singh S, Nagaraj R, Vaidya T (2003) Induction of autophagic cell death in Leishmania donovani by antimicrobial peptides. Mol Biochem Parasitol 127:23–35Google Scholar
  6. Chang HY, Yang X (2000) Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev 64:821–846Google Scholar
  7. Chose O, Noel C, Gerbod D, Brenner C, Viscogliosi E, Roseto A (2002) A form of cell death with some features resembling apoptosis in the amitochondrial unicellular organism Trichomonas vaginalis. Exp Cell Res 276:32–39Google Scholar
  8. Christensen ST, Chemnitz J, Straarup EM, Kristiansen K, Wheatley DN, Rasmussen L (1998) Staurosporine-induced cell death in Tetrahymena thermophila has mixed characteristics of both apoptotic and autophagic degeneration. Cell Biol Int 22:591–598Google Scholar
  9. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16Google Scholar
  10. Deshmukh M, Johnson EM Jr (1998) Evidence of a novel event during neuronal death: development of competence-to-die in response to cytoplasmic cytochrome c. Neuron 21:695–705Google Scholar
  11. Develoux M (2001) Griseofulvin. Ann Dermatol Venereol 128:1317–1325Google Scholar
  12. Diamond LS (1957) The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43:488–490Google Scholar
  13. Dunn WA Jr (1990) Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol 110:1923–1933Google Scholar
  14. Gordon MB, Howard L, Compton DA (2001) Chromosome movement in mitosis requires microtubule anchorage at spindle poles. J Cell Biol 152:425–434Google Scholar
  15. Granger BL, Warwood SJ, Benchimol M, de Souza W (2000) Transient invagination of flagella by Tritrichomonas foetus. Parasitol Res 86:699–709Google Scholar
  16. Guimarães CA, Benchimol M, Amarante-Mendes GP, Linden R (2003) Alternative programs of cell death in developing retinal tissue. J Biol Chem 278:41938–41946Google Scholar
  17. Huettenbrenner S, Maier S, Leisser C, Polgar D, Strasser S, Grusch M, Krupitza G (2003) The evolution of cell death programs as prerequisites of multicellularity. Mutat Res 543:235–249Google Scholar
  18. Jia L, Dourmashkin RR, Allen PD, Gray AB, Newland AC, Kelsey SM (1997) Inhibition of autophagy abrogates tumor necrosis factor alpha induced apoptosis in human T-lymphoblastic leukemia cells. Br J Haematol 98:673–685Google Scholar
  19. Lee N, Bertholet S, Debrabant A, Muller J, Duncan R, Nakhasi HL (2002) Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ 9:53–64Google Scholar
  20. Lloyd D, Harris JC, Maroulis S, Biagini GA, Wadley RB, Turner MP, Edwards MR (2000) The microaerophilic flagellate Giardia intestinalis: oxygen and its reaction products collapse membrane potential and cause cytotoxicity. Microbiology 146:3109–3118Google Scholar
  21. Madeiro da Costa RF, Benchimol M (2004) The effect of drugs on cell structure of Tritrichomonas foetus. Parasitol Res 92:159–170Google Scholar
  22. Mariante RM, Guimarães CA, Linden R, Benchimol M (2003) Hydrogen peroxide induces caspase activation and programmed cell death in the amitochondrial Tritrichomonas foetus. Histochem Cell Biol 120:129–141Google Scholar
  23. Moreira ME, Barcinski MA (2004) Apoptotic cell and phagocyte interplay: recognition and consequences in different cell systems. Acad Bras Ciênc 76:93–115Google Scholar
  24. Muller M (1993) The hydrogenosome. J Gen Microbiol 139:2879–2889Google Scholar
  25. Muller M (1990) Structure. In: Honigberg BM (eds) Trichomonads parasitic in humans. Springer, Berlin Heidelberg New York, pp 5–35Google Scholar
  26. Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ, Yuan J, Moskowitz MA (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18:3659–3668Google Scholar
  27. Noël C, Gerbod D, Delgado-Viscogliosi P, Fast NM, Ben Younes A, Chose O, Roseto A, Capron M, Viscogliosi E (2003) Morphogenesis during division and griseofulvin-induced changes of the microtubular cytoskeleton in the parasitic protist, Trichomonas vaginalis. Parasitol Res 89:487–494Google Scholar
  28. Pereira-Neves A, Ribeiro KC, Benchimol M (2003) Pseudocysts in trichomonads—new insights. Protist 154:313–329Google Scholar
  29. Ravagnan L, Roumier T, Kroemer G (2002) Mitochondria, the killer organelles and their weapons. J Cell Physiol 192:131–137Google Scholar
  30. Ribeiro KC, Monteiro-Leal LH, Benchimol M (2000) Contributions of the axostyle and flagella to closed mitosis in the protists Tritrichomonas foetus and Trichomonas vaginalis. J Eukaryot Microbiol 47:481–492Google Scholar
  31. Ribeiro KC, Arnholdt AC, Benchimol M (2002) Tritrichomonas foetus: induced division synchrony by hydroxyurea. Parasitol Res 88:627–631Google Scholar
  32. Rubino S, Unger E, Fogu G, Cappuccinelli P (1982) Effect of microtubule inhibitors in the tubulin system of Dictyostelium discoideum. Z Allg Mikrobiol 22:127–131Google Scholar
  33. Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407:784–788Google Scholar
  34. Seglen PO, Gordon PB (1982) 3-Methyladedine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA 79:1889–1892Google Scholar
  35. Sen N, Das BB, Ganguly A, Mukherjee T, Tripathi G, Bandyopadhyay S, Rakshit S, Sen T, Majumder HK (2004) Camptothecin induced mitochondrial dysfunction leading to programmed cell death in unicellular hemoflagellate Leishmania donovani. Cell Death Differ 11:924–936Google Scholar
  36. Sparagano OA (1995) Griseofulvin: generation time and ATP changes in the ciliate Tetrahymena pyriformis. Life Sci 57:897–901Google Scholar
  37. Sperandio S, de Belle I, Bredesen DE (2000) An alternative, no apoptotic form of programmed cell death. Proc Natl Acad Sci USA 97:14376–14381Google Scholar
  38. Stennicke HR, Salvesen GS (2000) Caspases—controlling intracellular signals by protease zymogene activation. Biochim Biophys Acta 1477:299–306Google Scholar
  39. van Loo G, Saelens X, van Gurp M, MacFarlane M, Martin SJ, Vandenabeele P (2002) The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 9:1031–1042Google Scholar
  40. Wyllie AH (1981) Cell death: a new classification separating apoptosis from necrosis. In: Bowen ID, Lockshin RA (eds) Cell death in biology and pathology. Chapman and Hall, New York, pp 9–34Google Scholar
  41. Wyllie AH, Goldstein P (2001) More than one way to go. Proc Natl Acad Sci USA 98:11–13Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Rafael M. Mariante
    • 1
    • 2
    • 3
  • Ricardo G. Vancini
    • 1
    • 2
  • Marlene Benchimol
    • 2
    • 4
    Email author
  1. 1.Programa de Ciências MorfológicasUniversidade Federal do Rio de JaneiroRio de JaneiroBrasil
  2. 2.Laboratório de Ultraestrutura CelularUniversidade Santa ÚrsulaRio de JaneiroBrasil
  3. 3.Laboratório de Neurogênese, Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrasil
  4. 4. Botafogo, Rio de JaneiroBrazil

Personalised recommendations