Advertisement

Histochemistry and Cell Biology

, Volume 124, Issue 1, pp 51–59 | Cite as

Expression of NTPDase1 and caveolins in human cardiovascular disease

  • Ágnes Kittel
  • Anna L. Kiss
  • Nándor Müllner
  • Ida Matkó
  • Beáta Sperlágh
Original paper

Abstract

Pathological circumstances like inflammation or ischemic insult facilitate the release of adenine nucleotides from several types of cells. These extracellular nucleotides are rapidly converted to adenosine by ectonucleotidases, mainly ectonucleoside triphosphate diphosphohydrolase1 (NTPDase1/CD39) and CD73. NTPDase1/CD39 can interact with caveolins, structural proteins of signal-transducing microdomains termed caveolae. Caveolins are thought to have physiological roles in heart ageing and cardiac diseases. The aim of this study was to investigate the expression of NTPDase1 together with caveolins in chronic human cardiovascular diseases and elucidate their role in human heart. The HPLC analysis showed significant increase in ATPase activity in pathological samples from patients with ischemic heart disease. Immunostaining also showed alterations in the expression and distribution of NTPDase1. Caveolin-1 and caveolin-2 expression was much alike in control and pathological cases, while expression of caveolin-3 was lower in pathological samples. Changes in the expression of NTPDase1 and caveolins seem to be independent of human cardiovascular disease.

Keywords

NTPDase1 Caveolins HPLC Ultracryo immunohistochemistry Enzyme histochemistry 

Notes

Acknowledgements

This work was supported by Hungarian grants ETT 480/2003, ETT472/2003, OTKA M036314, OTKA T037457 and OTKA T34722. The authors thank Mária Baranyi, Éva Szénássy, Judit Őszi for providing technical expertise and assistance and Margit Kutasi, Katalin Lőcsey for excellent technical assistance.

References

  1. Alto LE, Elimban V, Lukas A, Dhalla NS (2000) Modification of heart sarcolemmal Na+ /K+-ATPase activity during development of the calcium paradox. Mol Cell Biochem 207:87–94PubMedCrossRefGoogle Scholar
  2. Aravamudan B, Volonte D, Ramani R, Gursoy E, Lisanti MP, London B, Galbiati F (2003) Transgenic overexpression of caveolin-3 in the heart induces a cardiomyopathic phenotype. Hum Mol Genet 12:2777–2788PubMedCrossRefGoogle Scholar
  3. Au CG, Cooper ST, Lo HP, Compton AG, Yang N, Wintour EM, North KN, Winlaw DS (2004) Expression of aquaporin 1 in human cardiac and skeletal muscle. J Mol Cell Cardiol 36:655–662PubMedCrossRefGoogle Scholar
  4. Braun N, Sevigny J, Robson SC, Hammer K, Hanani M, Zimmermann H (2004) Association of the ecto-ATPase NTPDase2 with glial cells of the peripheral nervous system. Glia 45:124–132PubMedCrossRefGoogle Scholar
  5. Cagliani R, Bresolin N, Prelle A, Gallanti A, Fortunato F, Sironi M, Ciscato P, Fagiolari G, Bonato S, Galbiati S, Corti S, Lamperti C, Moggio M, Comi GP (2003) A CAV3 microdeletion differentially affects skeletal muscle and myocardium. Neurology 61:1513–1519PubMedGoogle Scholar
  6. Capozza F, Combs TP, Cohen AW, Cho YR, Park SY, Schubert W, Williams TM, Brasaemle DL, Jelicks LA, Scherer PE, Kim JK, Lisanti MP (2005) Caveolin-3 (−/−) Knockout Mice Show Increased Adiposity and Whole-Body Insulin Resistance, with Ligand-Induced Insulin Receptor Instability in Skeletal Muscle. Am J Physiol Cell Physiol DOI:10.1152/ajpcell.00489.2004Google Scholar
  7. Drury AN, Szent-Gyorgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 68:213–237PubMedGoogle Scholar
  8. Eltzschig HK, Thompson LF, Karhausen J, Cotta RJ, Ibla JC, Robson SC, Colgan SP (2004) Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood 104:3986–3992PubMedCrossRefGoogle Scholar
  9. Fazekas L, Horkay F, Kékesi V, Barát E, Huszár É, Fazekas R, Szabó T, Juhász-Nagy S, Naszlady A (1998) Elevation of adenosine and inosine concentrations in the pericardial fluid of human patients with coronary artery disease. Cardiol Hung 27:7–10Google Scholar
  10. Fox AC, Reed GE, Meilman H, Silk BB (1979) Release of nucleosides from canine and human hearts as anindex of prior ischemia. Am J Cardiol 43:52–58PubMedCrossRefGoogle Scholar
  11. Gayle RB III, Maliszewski CR, Gimpel SD, Schoenborn MA, Caspary RG, Richards C, Brasel K, Price V, Drosopoulos JH, Islam N, Alyonycheva TN, Broekman MJ, Marcus AJ (1998) Inhibition of platelet function by recombinant soluble ecto-ADPase/CD39. J Clin Invest 101:1851–1859PubMedGoogle Scholar
  12. Hare JM, Lofthouse RA, Juang GJ, Colman L, Ricker KM, Kim B, Senzaki H, Cao S, Tunin RS, Kass DA (2000) Contribution of caveolin protein abundance to augmented nitric oxide signaling in conscious dogs with pacing-induced heart failure. Circ Res 86:1085–1092PubMedGoogle Scholar
  13. Imai M, Goepfert C, Kaczmarek E, Robson SC (2000) CD39 modulates IL-1 release from activated endothelial cells. Biochem Biophys Res Commun 270:272–278PubMedCrossRefGoogle Scholar
  14. Kawabe JI, Grant BS, Yamamoto M, Schwencke C, Okumura S, Ishikawa Y (2001) Changes in caveolin subtype protein expression in aging rat organs. Mol Cell Endocrinol 176:91–95PubMedCrossRefGoogle Scholar
  15. Kittel A (1999) Lipopolysaccharide treatment modifies pH- and cation-dependent ecto-ATPase activity of endothelial cells. J Histochem Cytochem 47:393–400PubMedGoogle Scholar
  16. Kittel A, Kaczmarek E, Sevigny J, Lengyel K, Csizmadia E, Robson SC (1999) CD39 as a caveolar-associated ectonucleotidase. Biochem Biophys Res Commun 262:596–599PubMedCrossRefGoogle Scholar
  17. Kittel A, Garrido M, Varga G (2002) Localization of NTPDase1/CD39 in normal and transformed human pancreas. J Histochem Cytochem 50(4):549–556PubMedGoogle Scholar
  18. Kittel A, Pelletier J, Bigonnesse F, Guckelberger O, Kordas K, Braun N, Robson SC, Sevigny J (2004) Localization of nucleoside triphosphate diphosphohydrolase-1 (NTPDase1) and NTPDase2 in pancreas and salivary gland. J Histochem Cytochem 52:861–871PubMedCrossRefGoogle Scholar
  19. Knowles AF, Kaplan NO (1981) Variable ATPase composition of human tumor plasma membranes. Biochem Biophys Res Commun 99:1443–1448PubMedCrossRefGoogle Scholar
  20. Koziak K, Kaczmarek E, Kittel A, Sevigny J, Blusztajn JK, Schulte Am Esch J II, Imai M, Guckelberger O, Goepfert C, Qawi I, Robson SC (2000) Palmitoylation targets CD39/endothelial ATP diphosphohydrolase to caveolae. J Biol Chem 275:2057–2062PubMedCrossRefGoogle Scholar
  21. Lasley RD, Smart EJ (2001) Cardiac myocyte adenosine receptors and caveolae. Trends Cardiovasc Med 11:259–263PubMedCrossRefGoogle Scholar
  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  23. Machida T, Heerdt PM, Reid AC, Schaefer U, Silver RB, Broekman MJ, Marcus AJ, Levi R (2005) E-NTPDase1/CD39, localized in neurons of human and porcine heart, modulates ATP-induced norepinephrine exocytosis. J Pharmacol Exp Ther DOI:10.1124/jpet.104.081240Google Scholar
  24. Marcus AJ, Safier LB, Hajjar KA, Ullma HL, Islam N, Broekman MJ, Eiroa AM (1991) Inhibition of platelet function by an aspirin-insensitive endothelial cell ADPase. J Clin Invest 88:1690–1696PubMedCrossRefGoogle Scholar
  25. Marcus AJ, Broekman MJ, Drosopoulos JH, Islam N, Pinsky DJ, Sesti C, Levi R (2003) Heterologous cell–cell interactions: thromboregulation, cerebroprotection and cardioprotection by CD39 (NTPDase-1). J Thromb Haemost 1:2497–2509PubMedCrossRefGoogle Scholar
  26. Oe K, Sperlagh B, Santha E, Matko I, Nagashima H, Foldes FF, Vizi ES (1999) Modulation of norepinephrine release by ATP-dependent K(+)-channel activators and inhibitors in guinea-pig and human isolated right atrium. Cardiovasc Res 43:125–134PubMedCrossRefGoogle Scholar
  27. Pieber M, Valenzuela MA, Kettlun AM, Mancilla M, Aranda E, Collados L, Traverso-Cori A (1991) ATPase-ADPase activities of rat placental tissue. Comp Biochem Physiol B 100:281–285PubMedCrossRefGoogle Scholar
  28. Pinsky DJ, Broekman MJ, Peschon JJ, Stocking KL, Fujita T, Ramasamy R, Connolly ES Jr, Huang J, Kiss S, Zhang Y, Choudhri TF, McTaggart RA, Liao H, Drosopoulos JH, Price VL, Marcus AJ, Maliszewski CR (2002) Elucidation of the thromboregulatory role of CD39/ectoapyrase in the ischemic brain. J Clin Invest 109:1031–1040PubMedCrossRefGoogle Scholar
  29. Plesner L (1995) Ecto-ATPases: identities and functions. Int Rev Cytol 158:141–214PubMedCrossRefGoogle Scholar
  30. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492PubMedGoogle Scholar
  31. Ratajczak P, Damy T, Heymes C, Oliviero P, Marotte F, Robidel E, Sercombe R, Boczkowski J, Rappaport L, Samuel JL (2003) Caveolin-1 and −3 dissociations from caveolae to cytosol in the heart during aging and after myocardial infarction in rat. Cardiovasc Res 57:358–369PubMedCrossRefGoogle Scholar
  32. Ratajczak P, Oliviero P, Marotte F, Kolar F, Ostadal B, Samuel JL (2005) Expression and localisation of caveolins during postnatal development in rat heart. Implication of thyroid hormone. J Appl Physiol DOI 10.1152/japplphysiol.01292.2004Google Scholar
  33. Razani B, Schlegel A, Liu J, Lisanti MP (2001) Caveolin-1, a putative tumour suppressor gene. Biochem Soc Trans 29:494–499PubMedCrossRefGoogle Scholar
  34. Robson SC, Sevigny J, Imai M, Guckelberger O, Enjyoji K (2000) Thromboregulatory potential of endothelial CD39/nucleoside triphosphate diphosphohydrolase: modulation of purinergic signalling in platelets. Exp Op Ther Targets 4:155–171CrossRefGoogle Scholar
  35. Rybin VO, Grabham PW, Elouardighi H, Steinberg SF (2003) Caveolae-associated proteins incardiomyocytes: caveolin-2 expression and interactions with caveolin-3. Am J Physiol Heart Circ Physiol 285:H325–H332PubMedGoogle Scholar
  36. Schreiber HM, Kannan S (2004) Regulatory role of E-NTPase/E-NTPDase in Ca2+ /Mg2+ transport via gated channel. Theor Biol Med Model 1:3PubMedCrossRefGoogle Scholar
  37. Sesti C, Broekman MJ, Drosopoulos JH, Islam N, Marcus AJ, Levi R (2002) EctoNucleotidase in cardiac sympathetic nerve endings modulates ATP-mediated feedback of norepinephrine release. J Pharmacol Exp Ther 300:605–611PubMedCrossRefGoogle Scholar
  38. Sevigny J, Sundberg C, Braun N, Guckelberger O, Csizmadia E, Qawi I, Imai M, Zimmermann H, Robson SC (2002) Differential catalytic properties and vascular topography of murine nucleoside triphosphate diphosphohydrolase 1 (NTPDase1) and NTPDase2 have implications for thromboregulation. Blood 99:2801–2809PubMedCrossRefGoogle Scholar
  39. Sperlagh B, Kittel A, Lajtha A, Vizi ES (1995) ATP acts as fast neurotransmitter in rat habenula: neurochemical and enzymecytochemical evidence. Neuroscience 66:915–920PubMedCrossRefGoogle Scholar
  40. Sperlagh B, Mergl Z, Juranyi Z, Vizi ES, Makara GB (1999) Local regulation of vasopressin and oxytocin secretion by extracellular ATP in the isolated posterior lobe of the rat hypophysis. J Endocrinol 160:343–350PubMedCrossRefGoogle Scholar
  41. Tang J, Pugh W, Polonsky KS, Zhang H (1996) Preservation of insulin secretory responses to P2 purinoceptor agonists in Zucker diabetic fatty rats. Am J Physiol 270:E504–E512PubMedGoogle Scholar
  42. Tokuyasu KT (1986) Application of cryoultramicrotomy to immunocytochemistry. J Microsc 143:139–149PubMedGoogle Scholar
  43. Yeung G, Mulero JJ, McGowan DW, Bajwa SS, Ford JE (2000) CD39L2, a gene encoding a human nucleoside diphosphatase, predominantly expressed in the heart. Biochemistry 39:12916–12923PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Ágnes Kittel
    • 1
  • Anna L. Kiss
    • 2
  • Nándor Müllner
    • 3
  • Ida Matkó
    • 4
  • Beáta Sperlágh
    • 1
  1. 1.Department of Pharmacology, Hungarian Academy of SciencesInstitute of Experimental Medicine Hungary
  2. 2.Department of Human Morphology and Developmental Biology, Medical SchoolSemmelweis University Hungary
  3. 3.Department of Medical Chemistry, Molecular Biology and PathobiochemistrySemmelweis University Hungary
  4. 4.Medical School, Cardiac Surgery ClinicSemmelweis University Hungary

Personalised recommendations