Advertisement

Histochemistry and Cell Biology

, Volume 124, Issue 1, pp 35–50 | Cite as

Expression pattern of the orphan receptor LGR4/GPR48 gene in the mouse

  • Grégory Van Schoore
  • Fernando Mendive
  • Roland Pochet
  • Gilbert Vassart
Original paper

Abstract

Leucine-rich G-protein-coupled Receptors (LGR) constitute a subfamily of receptors related to glycoprotein hormone receptors. Amongst them, LGR4, LGR5 and LGR6 form a cluster for which natural agonists are still unknown. By an extensive gene trapping approach, Leighton et al. (2001) obtained a mouse line in which the LGR4 gene is disrupted by a trap vector carrying two biological markers, beta-geo (a fusion between bacterial beta-galactosidase and neomycin phosphotransferase) and a placental alkaline phosphatase (PLAP). Due to perinatal lethality, characterization of adult mice homozygous for this insertion has been impaired. In the present study we have investigated LacZ and PLAP activity patterns in heterozygous mice as a marker for LGR4 natural expression at both macroscopic and histological levels. We present a detailed atlas of LGR4 expression, which displays very wide expression with particularly strong activity in cartilages, kidneys, reproductive tracts and nervous system cells.

Keywords

GPCR Orphan receptor Leucine-rich repeats LGR 

Notes

Acknowledgements

We want to thank Dr William C Skarnes for providing us with LST20 mice and Dr Lisa Goodrich for isolating LST20 gene trap cell line. This study was supported by the Belgian State, Prime Minister’s office, Service for Sciences, Technology and Culture. Also supported by grants from FRSM, FNRS, ARBD, CICYT (SAF2002-01509) and the Improving Human Potential of the European Community (HPRI-CT-1999-00071). GVS is a fellow of the FRIA; FM is a recipient of a postdoctoral fellowship of the Francqui Foundation.

References

  1. Ames RS, Sarau HM, Chambers JK, Willette RN, Aiyar NV, Romanic AM, Louden CS, Foley JJ, Sauermelch CF, Coatney RW, Ao Z, Disa J, Holmes SD, Stadel JM, Martin JD, Liu WS, Glover GI, Wilson S, McNulty DE, Ellis CE, Elshourbagy NA, Shabon U, Trill JJ, Hay DW, Douglas SA (1999) Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature 401(6750):282–286. Erratum (1999) in : Nature 402(6764):898Google Scholar
  2. Ascoli M, Fanelli F, Segaloff DL (2002) The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr Rev 23(2):141–174PubMedCrossRefGoogle Scholar
  3. Avram CE, Cooper TG (2004) Development of the caput epididymidis studied by expressed proteins (a glutamate transporter, a lipocalin and beta-galactosidase) in the c-ros knockout and wild-type mice with prepubertally ligated efferent ducts. Cell Tissue Res 317(1):23–34PubMedGoogle Scholar
  4. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118(5):635–648PubMedCrossRefGoogle Scholar
  5. Braun T, Schofield PR, Sprengel R (1991) Amino-terminal leucine-rich repeats in gonadotropin receptors determine hormone selectivity. EMBO J 10(7):1885–1890PubMedGoogle Scholar
  6. Civelli O, Nothacker HP, Saito Y, Wang Z, Lin SH, Reinscheid RK (2001) Novel neurotransmitters as natural ligands of orphan G-protein-coupled receptors. Trends Neurosci 24(4):230–237PubMedCrossRefGoogle Scholar
  7. Dias JA, Van Roey P (2001) Structural biology of human follitropin and its receptor. Arch Med Res 32(6):510–519PubMedCrossRefGoogle Scholar
  8. Hauser F, Nothacker HP, Grimmelikhuijzen CJ (1997) Molecular cloning, genomic organization, and developmental regulation of a novel receptor from Drosophila melanogaster structurally related to members of the thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone/choriogonadotropin receptor family from mammals. J Biol Chem 272(2):1002–1010PubMedCrossRefGoogle Scholar
  9. Hermey G, Methner A, Schaller HC, Hermans-Borgmeyer I (1999) Identification of a novel seven-transmembrane receptor with homology to glycoprotein receptors and its expression in the adult and developing mouse. Biochem Biophys Res Commun 254(1):273–279PubMedCrossRefGoogle Scholar
  10. Herpin A, Badariotti F, Rodet F, Favrel P (2004) Molecular characterization of a new leucine-rich repeat-containing G protein-coupled receptor from a bivalve mollusc: evolutionary implications. Biochim Biophys Acta. 1680(3):137–144PubMedGoogle Scholar
  11. Hsu SY (2003) New insights into the evolution of the relaxin-LGR signaling system. Trends Endocrinol Metab 14(7):303–309PubMedCrossRefGoogle Scholar
  12. Hsu SY, Liang SG, Hsueh AJ (1998) Characterization of two LGR genes homologous to gonadotropin and thyrotropin receptors with extracellular leucine-rich repeats and a G protein-coupled, seven-transmembrane region. Mol Endocrinol 12:1830–1845PubMedCrossRefGoogle Scholar
  13. Hsu SY, Kudo M, Chen T, Nakabayashi K, Bhalla A, van der Spek PJ, van Duin M, Hsueh AJ (2000) The three subfamilies of leucine-rich repeat-containing G protein-coupled receptors (LGR): identification of LGR6 and LGR7 and the signaling mechanism for LGR7. Mol Endocrinol 14(8):1257–1271PubMedCrossRefGoogle Scholar
  14. Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD, Hsueh AJ (2002) Activation of orphan receptors by the hormone relaxin. Science 295(5555):671–674PubMedCrossRefGoogle Scholar
  15. Huizinga EG, Tsuji S, Romijn RA, Schiphorst ME, de Groot PG, Sixma JJ, Gros P (2002) Structures of glycoprotein Ibalpha and its complex with von Willebrand factor A1 domain. Science 297(5584):1176–1179PubMedCrossRefGoogle Scholar
  16. Kajava AV (1998) Structural diversity of leucine-rich repeat proteins. J Mol Biol 277:519–527PubMedCrossRefGoogle Scholar
  17. Kobe B, Deisenhofer J (1995) Proteins with leucine-rich repeats. Curr Opin Struct Biol 5:409–416PubMedCrossRefGoogle Scholar
  18. Kudo M, Chen T, Nakabayashi K, Hsu SY, Hsueh AJ (2000) The nematode leucine-rich repeat-containing, G protein-coupled receptor (LGR) protein homologous to vertebrate gonadotropin and thyrotropin receptors is constitutively active in mammalian cells. Mol Endocrinol 14(2):272–284PubMedCrossRefGoogle Scholar
  19. Kumagai J, Hsu SY, Matsumi H, Roh JS, Fu P, Wade JD, Bathgate RA, Hsueh AJ (2002) INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J Biol Chem 277(35):31283–31286PubMedCrossRefGoogle Scholar
  20. Lako M, Hole N (2000) Searching the unknown with gene trapping. Expert Rev Mol Med 2000:1–11Google Scholar
  21. Leighton PA, Mitchell KJ, Goodrich LV, Lu X, Pinson K, Scherz P, Skarnes WC, Tessier-Lavigne M (2001) Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature 410:174–179PubMedCrossRefGoogle Scholar
  22. Luo CW, Dewey EM, Sudo S, Ewer J, Hsu SY, Honegger HW, Hsueh AJ (2005) Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein-coupled receptor LGR2. Proc Natl Acad Sci USA 102(8):2820–2825PubMedCrossRefGoogle Scholar
  23. Ma W, Rogers K, Zbar B, Schmidt L (2002) Effects of different fixatives on beta-galactosidase activity. J Histochem Cytochem 50(10):1421–1424PubMedGoogle Scholar
  24. Mazerbourg S, Bouley DM, Sudo S, Klein C, Zhang JV, Kawamura K, Goodrich LV, Rayburn H, Tessier-Lavigne M, Hsueh AJ (2004) LGR4 receptor null mice exhibit intrauterine growth retardation associated with embryonic and perinatal lethality. Mol Endocrinol 18(9):2241–2254PubMedCrossRefGoogle Scholar
  25. Mendive FM, Van Loy T, Claeysen S, Poels J, Williamson M, Hauser F, Grimmelikhuijzen CJP, Vassart G, Vanden Broeck J (2005) Drosophila molting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2. FEBS lett 579(10):2171–2176PubMedCrossRefGoogle Scholar
  26. Mitchell KJ, Pinson KI, Kelly OG, Brennan J, Zupicich J, Scherz P, Leighton PA, Goodrich LV, Lu X, Avery BJ, Tate P, Dill K, Pangilinan E, Wakenight P, Tessier-Lavigne M, Skarnes W (2001) Functional analysis of secreted and transmembrane proteins critical to mouse development. Nat Genet 28(3):241–249PubMedCrossRefGoogle Scholar
  27. Morita H, Mazerbourg S, Bouley DM, Luo CW, Kawamura K, Kuwabara Y, Baribault H, Tian H, Hsueh AJ (2004) Neonatal lethality of LGR5 null mice is associated with ankyloglossia and gastrointestinal distension.Mol Cell Biol 24(22):9736–9743PubMedCrossRefGoogle Scholar
  28. Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin JS, Sawicki JA, Cotsarelis G (2004) Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22(4):411–417PubMedCrossRefGoogle Scholar
  29. Nagayama Y, Wadsworth HL, Chazenbalk GD, Russo D, Seto P, Rapoport B (1991) Thyrotropin-luteinizing hormone/chorionic gonadotropin receptor extracellular domain chimeras as probes for thyrotropin receptor function. Proc Natl Acad Sci USA 88(3):902–905PubMedCrossRefGoogle Scholar
  30. Nakabayashi K, Matsumi H, Bhalla A, Bae J, Mosselman S, Hsu SY, Hsueh AJ (2002) Thyrostimulin, a heterodimer of two new human glycoprotein hormone subunits, activates the thyroid-stimulating hormone receptor. J Clin Invest 109(11):1445–1452PubMedCrossRefGoogle Scholar
  31. Nishi S, Hsu SY, Zell K, Hsueh AJ (2000) Characterization of two fly LGR (leucine-rich repeat-containing, G protein-coupled receptor) proteins homologous to vertebrate glycoprotein hormone receptors: constitutive activation of wild-type fly LGR1 but not LGR2 in transfected mammalian cells. Endocrinology 141(11):4081–4090PubMedCrossRefGoogle Scholar
  32. Nishi S, Nakabayashi K, Kobilka B, Hsueh AJ (2002) The ectodomain of the luteinizing hormone receptor interacts with exoloop 2 to constrain the transmembrane region: studies using chimeric human and fly receptors. J Biol Chem 277(6):3958–3964PubMedCrossRefGoogle Scholar
  33. Nothacker HP, Grimmelikhuijzen CJ (1993) Molecular cloning of a novel, putative G protein-coupled receptor from sea anemones structurally related to members of the FSH, TSH, LH/CG receptor family from mammals. Biochem Biophys Res Commun 197(3):1062–1069. Erratum (1994) in : Biochem Biophys Res Commun 200(1):668Google Scholar
  34. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(4):573–585PubMedCrossRefGoogle Scholar
  35. Skarnes WC, Moss JE, Hurtley SM, Beddington RS (1995) Capturing genes encoding membrane and secreted proteins important for mouse development. Proc Natl Acad Sci USA 92(14):6592–6596PubMedCrossRefGoogle Scholar
  36. Smits G, Campillo M, Govaerts C, Janssens V, Richter C, Vassart G, Pardo L, Costagliola S (2003) Glycoprotein hormone receptors: determinants in leucine-rich repeats responsible for ligand specificity. EMBO J 22(11):2692–2703PubMedCrossRefGoogle Scholar
  37. Stumpp MT, Forrer P, Binz HK, Pluckthun A (2003) Designing repeat proteins: modular leucine-rich repeat protein libraries based on the mammalian ribonuclease inhibitor family. J Mol Biol 332(2):471–487PubMedCrossRefGoogle Scholar
  38. Szkudlinski MW, Fremont V, Ronin C, Weintraub BD (2002) Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiol Rev 82(2):473–502PubMedGoogle Scholar
  39. Takeda S, Okada T, Okamura M, Haga T, Isoyama-Tanaka J, Kuwahara H, Minamino N (2004) The receptor-Galpha fusion protein as a tool for ligand screening : a model study using a nociceptin receptor-Galphai2 fusion protein. J Biochem (Tokyo) 135(5):597–604Google Scholar
  40. Tensen CP, Van Kesteren ER, Planta RJ, Cox KJ, Burke JF, van Heerikhuizen H, Vreugdenhil E (1994) A G protein-coupled receptor with low density lipoprotein-binding motifs suggests a role for lipoproteins in G-linked signal transduction. Proc Natl Acad Sci USA 91(11):4816–4820PubMedCrossRefGoogle Scholar
  41. Vassart G, Pardo L, Costagliola S (2004) A molecular dissection of the glycoprotein hormone receptors. Trends Biochem Sci 29(3):119–126PubMedCrossRefGoogle Scholar
  42. Wittamer V, Franssen JD, Vulcano M, Mirjolet JF, Le Poul E, Migeotte I, Brezillon S, Tyldesley R, Blanpain C, Detheux M, Mantovani A, Sozzani S, Vassart G, Parmentier M, Communi D (2003) Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med 198(7):977–985PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Grégory Van Schoore
    • 1
  • Fernando Mendive
    • 1
  • Roland Pochet
    • 2
  • Gilbert Vassart
    • 1
    • 3
  1. 1.Université Libre de BruxellesBrusselsBelgium
  2. 2.Laboratoire d’histologie, Faculté de MédecineUniversité Libre de BruxellesBrusselsBelgium
  3. 3.Service de Génétique Médicale, Hôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations