Histochemistry and Cell Biology

, Volume 123, Issue 1, pp 89–104 | Cite as

Production and characterisation of cell- and tissue-specific monoclonal antibodies for the flatworm Macrostomum sp.

  • Peter Ladurner
  • Daniela Pfister
  • Christof Seifarth
  • Lukas Schärer
  • Monika Mahlknecht
  • Willi Salvenmoser
  • Regine Gerth
  • Florentine Marx
  • Reinhard Rieger
Original Paper


Monoclonal antibodies (mABs) against various cell types of the basal free-living flatworm Macrostomum sp. were produced by immunising Balb/c mice with cell suspensions of disintegrated animals. We identified 360 positive supernatants with specific staining of various tissues, cell types, patterns or structures. Here we report immunocytochemical characterisation, histological stainings and isotyping of 11 mABs specific for muscle cells (MMu-1, MMu-2, MMu-3, MMu-4), digestive and prostate glands (MDr-1 and MDr-2, MPr-1), epidermal cells (MEp-1), the ventral nerve cord including neuron clusters (MNv-1), gastrodermal cells (MDa-1) and spermatids (MSp-1). Confocal microscopy, histological techniques, electron microscopy and immunoblotting were applied to demonstrate stainings in juveniles, adults, starved or well-fed animals. Considering the current lack of specific markers the obtained mABs will be particularly helpful studying embryonic and postembryonic development, pattern formation, cell differentiation, regeneration and reproductive allocation in Macrostomum sp., and possibly other basal flatworms. The small size, ease of culturing, short generation time, transparency and the basal phylogenetic position specify Macrostomum sp. as a suitable model organism for comparative analyses within Platyhelminthes and to Drosophila and C. elegans.


Platyhelminthes Differentiation Stem cells Neoblasts Turbellaria 



We are grateful to Peter Berger for the support and suggestions on the hybridoma technique and Bernd Pelster for the access to the confocal microscope. We thank Dr. Hermann Dietrich for support with immunisations and Renate Weiler-Görz and Dr. Alexandra Lusser for help with the immunoblot assays. This work was supported by FWF grants P13060 and P15204. L.S is supported by a Liese-Meitner fellowship (FWF, Austria). P.L. is supported by an APART fellowship (number 10841) of the Austrian Academy of Sciences.


  1. Agata K (2002) Molecular and cellular approaches to planarian regeneration. Zool Sci 19:1391–1392CrossRefPubMedGoogle Scholar
  2. Agata K, Tanaka T, Kobayashi C, Kato K, Saitoh Y (2003) Intercalary regeneration in planarians. Dev Dyn 226:308–316CrossRefPubMedGoogle Scholar
  3. Akesson B, Gschwentner R, Hendelberg J, Ladurner P, Muller J, Rieger R (2001) Fission in Convolutriloba longifissura: asexual reproduction in acoelous turbellarians revisited. Acta Zool 82:231–239CrossRefGoogle Scholar
  4. Asano Y, Yoshida A, Isozaki N, Ishida S (2001) Production of intestine-specific monoclonal antibody and interspecific cross-reaction in triclads and polyclads. Belg J Zool 131:137–141Google Scholar
  5. Baguñá J (1981) Planarian neoblasts. Nature 290:14–15Google Scholar
  6. Baguñá J, Salo E, Auladell C (1989) Regeneration and pattern formation in planarians. III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells. Development 107:77–86Google Scholar
  7. Baguñá J, Salo E, Romero R, Garciafernandez J, Bueno D, Munozmarmol AM, Bayascasramirez JR, Casali A (1994) Regeneration and pattern-formation in planarians: cells, molecules and genes. Zool Sci 11:781–795Google Scholar
  8. Bueno D, Baguñá J, Romero R (1997) Cell-, tissue-, and position-specific monoclonal antibodies against the planarian Dugesia (Girardia) tigrina. Histochem Cell Biol 107:139–149CrossRefPubMedGoogle Scholar
  9. Cebria F, Romero R (2001) Body-wall muscle restoration dynamics are different in dorsal and ventral blastemas during planarian anterior regeneration. Belg J Zool 131:111–115Google Scholar
  10. Cebria F, Vispo M, Newmark P, Bueno D, Romero R (1997) Myocyte differentiation and body wall muscle regeneration in the planarian Girardia tigrina. Dev Genes Evol 207:306–316CrossRefGoogle Scholar
  11. Cebria F, Bueno D, Reigada S, Romero R (1999) Intercalary muscle cell renewal in planarian pharynx. Dev Genes Evol 209:249–253CrossRefPubMedGoogle Scholar
  12. Crandall IE, Newell PC (1989) Changes in cell surface glycoproteins during Dictyostelium development analysed using monoclonal antibodies. Development 107:87–94PubMedGoogle Scholar
  13. Dunne JF, Javois LC, Huang LW, Bode HR (1985) A subset of cells in the nerve net of Hydra oligactis defined by a monoclonal antibody: its arrangement and development. Dev Biol 109:41–53PubMedGoogle Scholar
  14. Goetinck S, Waterston RH (1994) The Caenorhabditis elegans Unc-87 protein is essential for maintenance, but not assembly, of bodywall muscle. J Cell Biol 127:71–78CrossRefPubMedGoogle Scholar
  15. Gschwentner R, Ladurner P, Rieger R (2001) Stem cells in a basal bilaterian: S-phase and mitotic cells in Convolutriloba longifissura (Acoela, Platyhelminthes). Cell Tissue Res 304:401–408CrossRefPubMedGoogle Scholar
  16. Gschwentner R, Mueller J, Ladurner P, Rieger R, Tyler S (2003) Unique patterns of longitudinal body-wall musculature in the Acoela (Plathelminthes): the ventral musculature of Convolutriloba longifissura. Zoomorphology 122:87–94Google Scholar
  17. Gustafsson MK (1976) Studies on cytodifferentiation in the neck region of Diphyllobothrium dendriticum Nitzsch, 1824 (Cestoda, Pseudophyllidea). Z Parasitenkd 50:323–329PubMedGoogle Scholar
  18. Gustafsson MK, Eriksson K (1992) Never ending growth and a growth factor. I. Immunocytochemical evidence for the presence of basic fibroblast growth factor in a tapeworm. Growth Factors 7:327–334PubMedGoogle Scholar
  19. Henry JQ, Martindale MQ, Boyer BC (2000) The unique developmental program of the acoel flatworm, Neochildia fusca. Dev Biol 220:285–295CrossRefPubMedGoogle Scholar
  20. Hooge MD (2001) Evolution of body-wall musculature in the Platyhelminthes (Acoelomorpha, Catenulida, Rhabditophora). J Morphol 249:171–194CrossRefPubMedGoogle Scholar
  21. Hooge M, Tyler S (1999) Body-wall musculature of Praeconvoluta tornuva n.sp., and the use of muscle patterns in taxonomy of acoel turbellarians. Invertebr Biol 118:8–17Google Scholar
  22. Itoh M, Kimura J, Tsukise A, Okano M (1994) Immunohistochemical characterization of a stage-specific antigen during oogenesis and spermatogenesis recognized with monoclonal antibody. Cell Biol Int 18:819–827CrossRefPubMedGoogle Scholar
  23. Javois LC (1990) Patterning of the head in Hydra as visualized by a monoclonal antibody. III. The dynamics of head regeneration. J Exp Zool 254:155–164PubMedGoogle Scholar
  24. Javois LC, Wood RD, Bode HR (1986) Patterning of the head in Hydra as visualized by a monoclonal antibody. I. Budding and regeneration. Dev Biol 117:607–618CrossRefPubMedGoogle Scholar
  25. Javois LC, Bode PM, Bode HR (1988) Patterning of the head in Hydra as visualized by a monoclonal antibody. II. The initiation and localization of head structures in regenerating pieces of tissue. Dev Biol 129:390–399PubMedGoogle Scholar
  26. Kato K, Orii H, Watanabe K, Agata K (1999) The role of dorsoventral interaction in the onset of planarian regeneration. Development 126:1031–1040PubMedGoogle Scholar
  27. Kobayashi C, Kobayashi S, Orii H, Watanabe K, Agata K (1998) Identification of two distinct muscles in the planarian Dugesia japonica by their expression of myosin heavy chain genes. Zool Sci 15:861–869Google Scholar
  28. Kobayashi C, Watanabe K, Agata K (1999) The process of pharynx regeneration in planarians. Dev Biol 211:27–38CrossRefPubMedGoogle Scholar
  29. Kobayashi T, Kajiura-Kobayashi H, Nagahama Y (2000) Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, tilapia, Oreochromis niloticus. Mech Dev 99:139–142CrossRefPubMedGoogle Scholar
  30. Kubota Y, Morita T, Ito K (1996) New monoclonal antibody (4E9R) identifies mouse neural crest cells. Dev Dyn 206:368–378CrossRefPubMedGoogle Scholar
  31. Ladurner P, Rieger R (2000) Embryonic muscle development of Convoluta pulchra (Turbellaria-Acoelomorpha, Platyhelminthes). Dev Biol 222:359–375CrossRefPubMedGoogle Scholar
  32. Ladurner P, Mair GR, Reiter D, Rieger RM (1997) The serotonergic nervous system of two macrostomid species: recent or ancient divergence? Invertebr Biol 3:178–191Google Scholar
  33. Ladurner P, Rieger R, Baguna J (2000) Spatial distribution and differentiation potential of stem cells in hatchlings and adults in the marine platyhelminth Macrostomum sp.: a bromodeoxyuridine analysis. Dev Biol 226:231–241CrossRefPubMedGoogle Scholar
  34. Littlefield CL, Dunne JF, Bode HR (1985) Spermatogenesis in Hydra oligactis. I. Morphological description and characterization using a monoclonal antibody specific for cells of the spermatogenic pathway. Dev Biol 110:308–320PubMedGoogle Scholar
  35. Mair GR, Maule AG, Day TA, Halton DW (2000) A confocal microscopical study of the musculature of adult Schistosoma mansoni. Parasitology 121:163–170CrossRefPubMedGoogle Scholar
  36. Mazzolini L, Vaeck M, van Montagu M (1989) Conserved epitopes on plant H1 histones recognized by monoclonal antibodies. Eur J Biochem 178:779–787PubMedGoogle Scholar
  37. Milstein C (1999) The hybridoma revolution: an offshoot of basic research. Bioessays 21:966–973CrossRefPubMedGoogle Scholar
  38. Morris J, Ramachandra NB, Ladurner P, Egger B, Rieger R, Hartenstein V (2004) The embryonic development of the flatworm Macrostomum sp. Dev Genes Evol 214:220–239CrossRefPubMedGoogle Scholar
  39. Newmark PA, Sanchez AA (2000) Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 220:142–153CrossRefPubMedGoogle Scholar
  40. Newmark PA, Sanchez AA (2002) Not your father’s planarian: a classic model enters the era of functional genomics. Nat Rev Genet 3:210–219CrossRefPubMedGoogle Scholar
  41. Nimeth K, Mahlknecht M, Mezzanato A, Peter R, Rieger R, Ladurner P (2004) Stem cell dynamics during growth, feeding and starvation in the basal flatworm Macrostomum sp. (Platyhelminthes). Dev Dyn 230:91–99CrossRefPubMedGoogle Scholar
  42. Orii H, Ito H, Watanabe K (2002) Anatomy of the planarian Dugesia japonica. I. The muscular system revealed by antisera against myosin heavy chains. Zool Sci 19:1123–1131CrossRefPubMedGoogle Scholar
  43. Patel NH (1994) Imaging neuronal subsets and other cell types in whole-mount Drosophila embryos and larvae using antibody probes. Methods Cell Biol 44:445–487PubMedGoogle Scholar
  44. Reiter D, Boyer B, Ladurner P, Mair G, Salvenmoser W, Rieger R (1996) Differentiation of the body-wall musculature in Macrostomum hystricinum marinum and Hoploplana inquilina (Plathelminthes), as models for muscle development in lower Spiralia. Roux’s Arch Dev Biol 205:410–423Google Scholar
  45. Rieger RM, Ladurner P (2003) The significance of muscle cells for the origin of mesoderm in Bilateria. Integrative Comp Biol 43:47–54Google Scholar
  46. Rieger RM, Gehlen M, Haszprunar G, Holmlund M, Legniti A, Salvenmoser W, Tyler S (1988) Laboratory cultures of marine Macrostomida (Turbellaria). Fortschr Zool 36:523Google Scholar
  47. Rieger RM, Salvenmoser W, Legniti A, Tyler S (1994) Phalloidin-rhodamine preparations of Macrostomum hystricinum marinum (Plathelminthes): morphology and postembryonic development of the musculature. Zoomorphology 114:133–147CrossRefGoogle Scholar
  48. Romero R, Fibla J, Bueno D, Sumoy L, Soriano M, Baguñá J (1991) Monoclonal antibodies as markers of specific cell types and regional antigens in the freshwater planarian Dugesia(G)tigrina. Hydrobiologia 227:73–79CrossRefGoogle Scholar
  49. Salo E, Baguna J (2002) Regeneration in planarians and other worms: new findings, new tools, and new perspectives. J Exp Zool 292:528–539CrossRefPubMedGoogle Scholar
  50. Salvenmoser W, Riedl D, Ladurner P, Rieger R (2001) Early steps in the regeneration of the musculature in Macrostomum sp. (Macrostomorpha, Platyhelminthes). Belg J Zool 131(suppl 1):105–110Google Scholar
  51. Sanchez AA (2000) Regeneration in the metazoans: why does it happen? Bioessays 22:578–590CrossRefPubMedGoogle Scholar
  52. Sanchez AA (2003) The freshwater planarian Schmidtea mediterranea: embryogenesis, stem cells and regeneration. Curr Opin Genet Dev 13:438–444CrossRefPubMedGoogle Scholar
  53. Sanchez AA, Newmark PA (1998) The use of planarians to dissect the molecular basis of metazoan regeneration. Wound Repair Regen 6:413–420CrossRefPubMedGoogle Scholar
  54. Saumweber H (1991) The use of monoclonal antibody libraries. Methods Cell Biol 35:229–252PubMedGoogle Scholar
  55. Schärer L, Ladurner P (2003) Phenotypically plastic adjustment of sex allocation in a simultaneous hermaphrodite. Proc R Soc Lond Ser B Biol Sci 270:935–941CrossRefGoogle Scholar
  56. Schärer L, Ladurner P, Rieger RM (2004a) Bigger testes do work more: experimental evidence that testis size reflects testicular cell proliferation activity in the marine invertebrate, the free-living flatworm Macrostomum sp. Behav Ecol Sociobiol 56:420–425Google Scholar
  57. Schärer L, Joss G, Sandner P (2004b) Mating behaviour of the marine turbellarian Macrostomum sp.: these worms suck. Mar Biol 145:373–380Google Scholar
  58. Shinozawa T, Kawarada H, Takezaki K, Tanaka H, Inoue K (1995) Preparation of monoclonal-antibodies against planarian organs and the effect of fixatives. Hydrobiologia 305:255–257CrossRefGoogle Scholar
  59. Shirakawa T, Sakurai A, Inoue T, Sasaki K, Nishimura Y, Ishida S, Teshirogi W (1991) Production of cell-specific and tissue-specific monoclonal antibodies in the freshwater planarian Phagocata vivida. Hydrobiologia 227:81–91CrossRefGoogle Scholar
  60. Sokal RR, Rohlf FJ (1995) Biometry. Freeman, New YorkGoogle Scholar
  61. Tyler S (2003) Epithelium: the primary building block for metazoan complexity. Integrative Comp Biol 43:55–63Google Scholar
  62. Tyler S, Hyra GS (1998) Patterns of musculature as taxonomic characters for the Turbellaria Acoela. Hydrobiologia 383:51–59CrossRefGoogle Scholar
  63. Vispo M, Cebria F, Bueno D, Carranza S, Newmark P, Romero R (1996) Regionalisation along the anteroposterior axis of the freshwater planarian Dugesia(Girardia)tigrina by TCEN49 protein. Int J Dev Biol Suppl 1:S209–S210Google Scholar
  64. Yaross MS, Westerfield J, Javois LC, Bode HR (1986) Nerve cells in Hydra: monoclonal antibodies identify two lineages with distinct mechanisms for their incorporation into head tissue. Dev Biol 114:225–237PubMedGoogle Scholar
  65. Yu SM, Westfall JA, Dunne JF (1985) Light and electron microscopic localization of a monoclonal antibody in neurons in situ in the head region of Hydra. J Morphol 184:183–193PubMedGoogle Scholar
  66. Yu SM, Westfall JA, Dunne JF (1986) Use of a monoclonal antibody to classify neurons isolated from the head region of Hydra. J Morphol 188:79–90PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Peter Ladurner
    • 1
  • Daniela Pfister
    • 1
  • Christof Seifarth
    • 1
  • Lukas Schärer
    • 1
  • Monika Mahlknecht
    • 1
  • Willi Salvenmoser
    • 1
  • Regine Gerth
    • 2
  • Florentine Marx
    • 3
  • Reinhard Rieger
    • 1
  1. 1.Institute of Zoology and LimnologyUniversity of InnsbruckInnsbruckAustria
  2. 2.Institute for Biomedical Aging ResearchAustrian Academy of SciencesInnsbruckAustria
  3. 3.Department of Molecular BiologyInnsbruck Medical UniversityInnsbruckAustria

Personalised recommendations