Histochemistry and Cell Biology

, Volume 122, Issue 6, pp 579–586 | Cite as

Immunolocalization of protein 4.1B/DAL-1 during neoplastic transformation of mouse and human intestinal epithelium

  • Nobuhiko Ohno
  • Nobuo Terada
  • Shin-ichi Murata
  • Hisashi Yamakawa
  • Irene F. Newsham
  • Ryohei Katoh
  • Osamu Ohara
  • Shinichi OhnoEmail author
Original Paper


Recently, we have reported that the protein 4.1B immunolocalization occurred only in matured columnar epithelial cells of normal rat intestines. This finding suggested that protein 4.1B expression could be examined for a possible change during neoplastic transformation of the intestinal mucosa. In the present study, we first present the distribution of mouse protein 4.1B in normal intestinal epithelial cells and tumor cells using the adenomatous polyposis coli (Apc) mutant mouse model. A low level of protein 4.1B expression coincided with the phenotypic transition to carcinoma. To examine the protein 4.1B expression in human intestinal mucosa, we used another antibody against an isoform of the human protein 4.1B, DAL-1 (differentially expressed adenocarcinoma of the lung). Human DAL-1 was also expressed in matured epithelial cells in human colons, with a definite expression gradient along the crypt axis. In human colorectal cancer cells, however, DAL-1 expression was not detected. These results suggest that mouse protein 4.1B and human DAL-1 might have a striking analogy of functions, which may be integrally involved in epithelial proliferation. We propose that loss of protein 4.1B/DAL-1 expression might be a marker of intestinal tumors, indicative of a tumor suppressor function in the intestinal mucosa.


Protein 4.1B DAL-1 Mutant mouse strain Intestinal neoplasm Colorectal cancer 



The authors would like to thank Dr. Riccardo Fodde, Department of Pathology, Josephone Nefkens Institute, Erasmus University Medical Center, for sending us the intestinal tissues of Apc mutant model mouse, Apc+/Apc1638 N. The authors also thank Drs. Takeshi Baba, Yasuhisa Fujii, and Zagreb Zea-Aragon, Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, for their constructive comments on this work.


  1. Baldin V (2000) 14-3-3 proteins and growth control. Prog Cell Cycle Res 4:49–60PubMedGoogle Scholar
  2. Binda AV, Kabbani N, Lin R, Levenson R (2002) D2 and D3 dopamine receptor cell surface localization mediated by interaction with protein 4.1 N. Mol Pharmacol 62:507–513CrossRefPubMedGoogle Scholar
  3. Braga VM (2002) Cell–cell adhesion and signaling. Curr Opin Cell Biol 14:546–556CrossRefPubMedGoogle Scholar
  4. Bright-Thomas RM, Hargest R (2003) APC, beta-catenin and hTCF-4: an unholy trinity in the genesis of colorectal cancer. Eur J Surg Oncol 29:107–117CrossRefPubMedGoogle Scholar
  5. Charboneau AL, Singh V, Yu T, Newsham IF (2002) Suppression of growth and increased cellular attachment after expression of DAL-1 in MCF-7 breast cancer cells. Int J Cancer 100:181–188CrossRefPubMedGoogle Scholar
  6. Chishti AH, Kim AC, Marfatia SM, Lutchman M, Hanspal M, Jindal H, Liu SC, Low PS, Rouleau GA, Mohandas N, Chasis JA, Conboy JG, Gascard P, Takakuwa Y, Huang SC, Benz EJ Jr, Bretscher A, Fehon RG, Gusella JF, Ramesh V, Solomon F, Marchesi VT, Tsukita S, Tsukita S, Arpin M, Louvard D, Tonks NK, Anderson JM, Fanning AS, Bryant PJ, Woods DF, Hoover KB (1998) The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci 23:281–282CrossRefPubMedGoogle Scholar
  7. Cohen AR, Woods DF, Marfatia SM, Walther Z, Chishti AH, Anderson JM, Wood DF (1998) Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells. J Cell Biol 142:129–138CrossRefPubMedGoogle Scholar
  8. Conboy JG (1993) Structure, function, and molecular genetics of erythroid membrane skeletal protein 4.1 in normal and abnormal red blood cells. Semin Hematol 30:58–73PubMedGoogle Scholar
  9. Crepaldi T, Gautreau A, Comoglio PM, Louvard D, Arpin M (1997) Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J Cell Biol 138:423–434CrossRefPubMedGoogle Scholar
  10. Denisenko-Nehrbass N, Oguievetskaia K, Goutebroze L, Galvez T, Yamakawa H, Ohara O, Carnaud M, Girault JA (2003) Protein 4.1B associates with both Caspr/paranodin and Caspr2 at paranodes and juxtaparanodes of myelinated fibres. Eur J Neurosci 17:411–416CrossRefPubMedGoogle Scholar
  11. Fodde R, Smits R (2001) Disease model: familial adenomatous polyposis. Trends Mol Med 7:369–373CrossRefPubMedGoogle Scholar
  12. Giles RH, van Es JH, Clevers H (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653:1–24PubMedGoogle Scholar
  13. Gimm JA, An X, Nunomura W, Mohandas N (2002) Functional characterization of spectrin-actin-binding domains in 4.1 family of proteins. Biochemistry 41:7275–7282CrossRefPubMedGoogle Scholar
  14. Gollan L, Sabanay H, Poliak S, Berglund EO, Ranscht B, Peles E (2002) Retention of a cell adhesion complex at the paranodal junction requires the cytoplasmic region of Caspr. J Cell Biol 157:1247–1256CrossRefPubMedGoogle Scholar
  15. Gutmann DH, Donahoe J, Perry A, Lemke N, Gorse K, Kittiniyom K, Rempel SA, Gutierrez JA, Newsham IF (2000) Loss of DAL-1, a protein 4.1-related tumor suppressor, is an important early event in the pathogenesis of meningiomas. Hum Mol Genet 9:1495–1500CrossRefPubMedGoogle Scholar
  16. Gutmann DH, Hirbe AC, Huang ZY, Haipek CA (2001) The protein 4.1 tumor suppressor, DAL-1, impairs cell motility, but regulates proliferation in a cell-type-specific fashion. Neurobiol Dis 8:266–278CrossRefPubMedGoogle Scholar
  17. Hoover KB, Bryant PJ (2000) The genetics of the protein 4.1 family: organizers of the membrane and cytoskeleton. Curr Opin Cell Biol 12:229–234CrossRefPubMedGoogle Scholar
  18. Iwamoto M, Ahnen DJ, Franklin WA, Maltzman TH (2000) Expression of b-catenin and full-length APC protein in normal and neoplastic colonic tissues. Carcinogenesis 21:1935–1940CrossRefPubMedGoogle Scholar
  19. Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A, Yeung C, Gorlick R, Hewitt SM, Helman LJ (2004) The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med 10:182–186CrossRefPubMedGoogle Scholar
  20. Kolligs FT, Bommer G, Goke B (2002) Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis. Digestion 66:131–144CrossRefPubMedGoogle Scholar
  21. Krieg J, Hunter T (1992) Identification of the two major epidermal growth factor-induced tyrosine phosphorylation sites in the microvillar core protein ezrin. J Biol Chem 267:19258–19265PubMedGoogle Scholar
  22. Matsui T, Maeda M, Doi Y, Yonemura S, Amano M, Kaibuchi K, Tsukita S, Tsukita S (1998) Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol 140:647–657CrossRefPubMedGoogle Scholar
  23. Muslin AJ, Xing H (2000) 14-3-3 proteins: regulation of subcellular localization by molecular interference. Cell Signal 12:703–709CrossRefPubMedGoogle Scholar
  24. Ohara R, Yamakawa H, Nakayama M, Ohara O (2000) Type II brain 4.1 (4.1B/KIAA0987), a member of the protein 4.1 family, is localized to neuronal paranodes. Brain Res Mol Brain Res 85:41–52PubMedGoogle Scholar
  25. Parra M, Gascard P, Walensky LD, Gimm JA, Blackshaw S, Chan N, Takakuwa Y, Berger T, Lee G, Chasis JA, Snyder SH, Mohandas N, Conboy JG (2000) Molecular and functional characterization of protein 4.1B, a novel member of protein 4.1 family with high level, focal expression in brain. J Biol Chem 275:3247–3255CrossRefPubMedGoogle Scholar
  26. Perez-Moreno M, Jamora C, Fuchs E (2003) Sticky business: orchestrating cellular signals at adherens junctions. Cell 21:535–548CrossRefGoogle Scholar
  27. Perry A, Cai DX, Scheithauer BW, Swanson PE, Lohse CM, Newsham IF, Weaver A, Gutmann DH (2000) Merlin, DAL-1, and progesterone receptor expression in clinicopathologic subsets of meningioma: a correlative immunohistochemical study of 175 cases. J Neuropathol Exp Neurol 59:872–879PubMedGoogle Scholar
  28. Perry A, Giannini C, Raghavan R, Scheithauer BW, Banerjee R, Margraf L, Bowers DC, Lytle RA, Newsham IF, Gutmann DH (2001) Aggressive phenotypic and genotypic features in pediatric and NF-2 associated meningiomas: a clinicopathologic study of 53 cases. J Neuropathol Exp Neurol 60:994–1003PubMedGoogle Scholar
  29. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851PubMedGoogle Scholar
  30. Ramez M, Blot-Chabaud M, Cluzeaud F, Chanan S, Patterson M, Walensky LD, Marfatia S, Baines AJ, Chasis JA, Conboy JG, Mohandas N, Gascard P (2003) Distinct distribution of specific members of protein 4.1 gene family in the mouse nephron. Kidney Int 63:1321–1337PubMedGoogle Scholar
  31. Shen L, Liang F, Walensky LD, Huganir RL (2000) Regulation of AMPA receptor GluR1 subunit surface expression by a 4.1N-linked actin cytoskeletal association. J Neurosci 20:7932–7940PubMedGoogle Scholar
  32. Singh PK, Gutmann DH, Fuller CE, Newsham IF, Perry A (2002) Differential involvement of protein 4.1 family members DAL-1 and NF2 in intracranial and intraspinal ependymomas. Mod Pathol 15:526–531CrossRefPubMedGoogle Scholar
  33. Sloncova E, Fric P, Kucerova D, Lojda Z, Tuhackova Z, Sovova V (2001) Changes of E-cadherin and b-catenin in human and mouse intestinal tumours. Histochem J 33:13–17CrossRefPubMedGoogle Scholar
  34. Stewart BW, Kleihues P (2003) World cancer report. IARC Press, LyonGoogle Scholar
  35. Sun CX, Robb VA, Gutmann DH (2002) Protein 4.1 tumor suppressors: getting a FERM grip on growth regulation. J Cell Sci 115:3991–4000CrossRefPubMedGoogle Scholar
  36. Takakuwa Y (2000) Protein 4.1, a multifunctional protein of the erythrocyte membrane skeleton: structure and functions in erythrocytes and nonerythroid cells. Int J Hematol 72:298–309PubMedGoogle Scholar
  37. Terada N, Ohno N, Yamakawa H, Baba T, Fujii Y, Christofori G, Ohara O, Ohno S (2003) Protein 4.1B in mouse islets of Langerhans and b-cell tumorigenesis. Histochem Cell Biol 120:277–283CrossRefPubMedGoogle Scholar
  38. Terada N, Ohno N, Yamakawa H, Baba T, Fujii Y, Zea Z, Ohara O, Ohno S (2004a) Immunohistochemical study of protein 4.1B in the normal and W/Wv mouse seminiferous epithelium. J Histochem Cytochem 52:769–777CrossRefPubMedGoogle Scholar
  39. Terada N, Ohno N, Yamakawa H, Seki G, Fujii Y, Baba T, Ohara O, Ohno S (2004b) Immunoelectron microscopic localization of protein 4.1B in proximal S1 and S2 tubules of rodent kidneys. Med Electron Microsc 37:45–51CrossRefPubMedGoogle Scholar
  40. Terada N, Ohno N, Yamakawa H, Baba T, Fujii Y, Ohara O, Ohno S (2004c) Immunolocalization of protein 4.1B in the rat digestive system. J Mol Histol 35:347–353CrossRefGoogle Scholar
  41. Terada N, Ohno N, Yamakawa H, Baba T, Fujii Y, Ohara O, Ohno S (2004d) Protein 4.1B localizes on unmyelinated axonal membranes in the mouse enteric nervous system. Neurosci Lett 366:15–17CrossRefPubMedGoogle Scholar
  42. Tran YK, Bogler O, Gorse KM, Wieland I, Green MR, Newsham IF (1999) A novel member of the NF2/ERM/4.1 superfamily with growth suppressing properties in lung cancer. Cancer Res 59:35–43PubMedGoogle Scholar
  43. Tran Quang C, Gautreau A, Arpin M, Treisman R (2000) Ezrin function is required for ROCK-mediated fibroblast transformation by the Net and Dbl oncogenes. EMBO J 19:4565–4576CrossRefPubMedGoogle Scholar
  44. Walensky LD, Gascard P, Fields ME, Blackshaw S, Conboy JG, Mohandas N, Snyder SH (1998) The 13-kD FK506 binding protein, FKBP13, interacts with a novel homologue of the erythrocyte membrane cytoskeletal protein 4.1. J Cell Biol 141:143–153CrossRefPubMedGoogle Scholar
  45. Walensky LD, Blackshaw S, Liao D, Watkins CC, Weier HG, Parra M, Huganir RL, Conboy JG, Mohandas N, Snyder SH (1999) A novel neuron-enriched homolog of the erythrocyte membrane cytoskeletal protein 4.1. J Neurosci 19:6457–6467PubMedGoogle Scholar
  46. Wong NA, Pignatelli M (2002) Beta-catenin: a linchpin in colorectal carcinogenesis? Am J Pathol 160:389–401PubMedGoogle Scholar
  47. Yamakawa H, Ohara O (2000) Comparison of mRNA and protein levels of four members of the protein 4.1 family: the type II brain 4.1/4.1B/KIAA0987 is the most predominant member of the protein 4.1 family in rat brain. Gene 248:137–145CrossRefPubMedGoogle Scholar
  48. Yamakawa H, Ohara R, Nakajima D, Nakayama M, Ohara O (1999) Molecular characterization of a new member of the protein 4.1 family (brain 4.1) in rat brain. Brain Res Mol Brain Res 70:197–209PubMedGoogle Scholar
  49. Yu T, Robb VA, Singh V, Gutmann DH, Newsham IF (2002) The 4.1/ezrin/radixin/moesin domain of the DAL-1/protein 4.1B tumour suppressor interacts with 14-3-3 proteins. Biochem J 365:783–789PubMedGoogle Scholar
  50. Yu Y, Khan J, Khanna C, Helman L, Meltzer PS, Merlino G (2004) Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med 10:175–181Google Scholar
  51. Zhang S, Mizutani A, Hisatsune C, Higo T, Bannai H, Nakayama T, Hattori M, Mikoshiba K (2003) Protein 4.1 N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin-Darby canine kidney cells. J Biol Chem 278:4048–4056CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Nobuhiko Ohno
    • 1
  • Nobuo Terada
    • 1
  • Shin-ichi Murata
    • 2
  • Hisashi Yamakawa
    • 3
  • Irene F. Newsham
    • 4
  • Ryohei Katoh
    • 2
  • Osamu Ohara
    • 3
  • Shinichi Ohno
    • 1
    Email author
  1. 1.Department of Anatomy, Interdisciplinary Graduate School of Medicine and EngineeringUniversity of YamanashiYamanashiJapan
  2. 2.Department of Pathology, Interdisciplinary Graduate School of Medicine and EngineeringUniversity of YamanashiYamanashiJapan
  3. 3.Department of Human Gene ResearchKazusa DNA Research InstituteKisarazuJapan
  4. 4.Department of Neurosurgery & Hermelin Brain Tumor Center, Henry Ford HospitalDetroitUSA

Personalised recommendations