Advertisement

Histochemistry and Cell Biology

, Volume 122, Issue 4, pp 339–352 | Cite as

Reactive oxygen species in vascular biology: implications in hypertension

  • R. M. Touyz
  • E. L. Schiffrin
Review

Abstract

Reactive oxygen species (ROS), including superoxide (·O2), hydrogen peroxide (H2O2), and hydroxyl anion (OH-), and reactive nitrogen species, such as nitric oxide (NO) and peroxynitrite (ONOO), are biologically important O2 derivatives that are increasingly recognized to be important in vascular biology through their oxidation/reduction (redox) potential. All vascular cell types (endothelial cells, vascular smooth muscle cells, and adventitial fibroblasts) produce ROS, primarily via cell membrane-associated NAD(P)H oxidase. Reactive oxygen species regulate vascular function by modulating cell growth, apoptosis/anoikis, migration, inflammation, secretion, and extracellular matrix protein production. An imbalance in redox state where pro-oxidants overwhelm anti-oxidant capacity results in oxidative stress. Oxidative stress and associated oxidative damage are mediators of vascular injury and inflammation in many cardiovascular diseases, including hypertension, hyperlipidemia, and diabetes. Increased generation of ROS has been demonstrated in experimental and human hypertension. Anti-oxidants and agents that interrupt NAD(P)H oxidase-driven ·O2 production regress vascular remodeling, improve endothelial function, reduce inflammation, and decrease blood pressure in hypertensive models. This experimental evidence has evoked considerable interest because of the possibilities that therapies targeted against reactive oxygen intermediates, by decreasing generation of ROS and/or by increasing availability of antioxidants, may be useful in minimizing vascular injury and hypertensive end organ damage. The present chapter focuses on the importance of ROS in vascular biology and discusses the role of oxidative stress in vascular damage in hypertension.

Keywords

Superoxide NAD(P)H oxidase Nox Xanthine oxidase Nitric oxide synthase Redox signaling Hypertension Atherosclerosis 

Notes

Acknowledgements

The work of the authors was supported by grants 13570, 37917, 44018 and a Group grant to the Multidisciplinary Research Group on Hypertension, all from the Canadian Institutes of Health Research (previously called the Medical Research Council of Canada). R.M.T. received a scholarship from the Fonds de la recherche en santé du Québec.

References

  1. Ago T, Kitazono T, Ooboshi H, Iyama T, Han YH, Takada J, Wakisaka M, Ibayashi S, Utsumi H, Iida M (2004) Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation 109:227–233PubMedGoogle Scholar
  2. Alexander RW (1995) Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension 25:155–161PubMedGoogle Scholar
  3. Azumimi H, Inoue N, Takeshita S (1999) Expression of NADH/NADPH oxidase p22phox in human coronary arteries. Circulation 100:1494–1498PubMedGoogle Scholar
  4. Babior BM, Lambeth JD, Nauseef W (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397:342–344CrossRefPubMedGoogle Scholar
  5. Bagi Z, Koller A (2003) Lack of nitric oxide mediation of flow-dependent arteriolar dilation in type I diabetes is restored by sepiapterin. J Vasc Res 40:47–57PubMedGoogle Scholar
  6. Banfi B, Clark RA, Steger K, Krause K-H (2003) Two novel proteins activate superoxide generation by the NADPH oxidase Nox1. J Biol Chem 278:3510–3513CrossRefPubMedGoogle Scholar
  7. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM (2002) Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105:293–296PubMedGoogle Scholar
  8. Bengtsson SH, Gulluyan LM, Dusting GJ, Drummond GR (2003) Novel isoforms of NADPH oxidase in vascular physiology and pathophysiology. Clin Exp Pharmacol Physiol 30:849–854PubMedGoogle Scholar
  9. Berry C, Hamilton CA, Brosnan MJ, Magill FG, Berg GA, McMurray JJ, Dominiczak AF (2000) Investigation into the sources of superoxide in human blood vessels: angiotensin II increases superoxide production in human internal mammary arteries. Circulation 101:2206–2212PubMedGoogle Scholar
  10. Boshtam M, Rafiei M, Sadeghi K, Sarraf-Zadegan N (2002) Vitamin E can reduce blood pressure in mild hypertensives. Int J Vitam Nutr Res 72:309–314PubMedGoogle Scholar
  11. Brandes RP, Miller FJ, Beer S, Haendeler J, Hoffmann J, Ha T, Holland SM, Gorlach A, Busse R (2002) The vascular NADPH oxidase subunit p47phox is involved in redox-mediated gene expression. Free Radic Biol Med 32:1116–1122CrossRefPubMedGoogle Scholar
  12. Brigelius-Flohe R, Banning A, Kny M, Bol GF (2004) Redox events in interleukin-1 signaling. Arch Biochem Biophys 423:66–73CrossRefPubMedGoogle Scholar
  13. Brown AA, Hu FB (2001) Dietary modulation of endothelial function: implications for cardiovascular disease. Am J Clin Nutr. 73:673–686Google Scholar
  14. Cai H, Griendling KK, Harrison DG (2003) The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 24:471–478CrossRefPubMedGoogle Scholar
  15. Cantor EJ, Mancini EV, Seth R, Yao XH, Netticadan T (2003) Oxidative stress and heart disease: cardiac dysfunction, nutrition, and gene therapy. Curr Hypertens Rep 5:215–220PubMedGoogle Scholar
  16. Chabrashvili T, Tojo A, Onozato ML, Kitiyakara C, Quinn MT, Fujita T, Welch WJ, Wilcox CS (2002) Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension 39:269–274CrossRefPubMedGoogle Scholar
  17. Channon KM, Guzik TJ (2002) Mechanisms of superoxide production in human blood vessels: relationship to endothelial dysfunction, clinical and genetic risk factors. J Physiol Pharmacol 53:515–524PubMedGoogle Scholar
  18. Chappell LC, Seed PT, Briley AL, Kelly FJ, Lee R, et al (1999) Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: a randomized trial. Lancet 354:810–815PubMedGoogle Scholar
  19. Chen X, Touyz RM, Park JB, Schiffrin EL (2001) Antioxidant effects of vitamins C and E are associated with altered activation of vascular NAD(P)H oxidase and superoxide dismutase in stroke-prone SHR. Hypertension 38:606–611PubMedGoogle Scholar
  20. Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD (2001) Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269:131–140CrossRefPubMedGoogle Scholar
  21. Chiarugi P, Cirri P (2003) Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem Sci 28:509–514CrossRefPubMedGoogle Scholar
  22. Cosentino F, Sill JC, Katusic ZS (1994) Role of superoxide anions in the mediation of endothelium-dependent contractions. Hypertension 23:229–235PubMedGoogle Scholar
  23. Cosentino F, Barker JE, Brand MP, Heales SJ, Werner ER, Tippins JR, West N, Channon KM, Volpe M, Luscher TF (2001) Reactive oxygen species mediate endothelium-dependent relaxations in tetrahydrobiopterin-deficient mice. Arterioscler Thromb Vasc Biol 21:496–502PubMedGoogle Scholar
  24. Cracowski JL, Baguet JP, Ormezzano O, Bessard J, Stanke-Labesque F, Bessard G, Mallion JM (2003) Lipid peroxidation is not increased in patients with untreated mild-to-moderate hypertension. Hypertension 41:286–288CrossRefPubMedGoogle Scholar
  25. Dandona P, Karne R, Ghanim H, Hamouda W, Aljada A, Magsino CH (2000) Carvedilol inhibits reactive oxygen species generation by leukocytes and oxidative damage to amino acids. Circulation 101:122–124PubMedGoogle Scholar
  26. Dantas AP, Franco Mdo C, Silva-Antonialli MM, Tostes RC, Fortes ZB, Nigro D, Carvalho MH (2004) Gender differences in superoxide generation in microvessels of hypertensive rats: role of NAD(P)H-oxidase. Cardiovasc Res 61:22–29CrossRefPubMedGoogle Scholar
  27. Darley-Usmar V, Wiseman H, Halliwell B (1995) Nitric oxide and oxygen radicals, a question of balance. FEBS Lett 369:13–15CrossRefPubMedGoogle Scholar
  28. De Keulenaer GW, Alexander RW, Ushio-Fukai M, Ishizaka N, Griendling KK (1998) Tumour necrosis factor alpha activates a p22phox-based NADH oxidase in vascular smooth muscle. Biochem J 329:653–657PubMedGoogle Scholar
  29. De Leo FR, Ulman KV, Davis AR,Jutila KL, Quinn MT (1996) Assembly of the human neutrophil NADPH oxidase involves binding of p67phox and flavocytochrome b to a common functional domain in p47phox. J Biol Chem 271:17013–17020CrossRefPubMedGoogle Scholar
  30. Deshpande NN, Sorescu D, Seshiah P, Ushio-Fukai M, Akers M, Yin Q, Griendling KK (2002) Mechanism of hydrogen peroxide-induced cell cycle arrest in vascular smooth muscle. Antioxid Redox Signal 4:845–854CrossRefPubMedGoogle Scholar
  31. Dhalla SN, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673CrossRefPubMedGoogle Scholar
  32. Diep QN, Amiri F, Touyz RM, Cohn JS, Endemann D, Neves MF, Schiffrin EL (2002) PPARalpha activator effects on Ang II-induced vascular oxidative stress and inflammation. Hypertension 40:866–871CrossRefPubMedGoogle Scholar
  33. Diez J, Laviades C, Orbe J, Zalba G, Lopez B, Gonzalez A, Mayor G, Paramo JA, Beloqui O (2003) The A1166C polymorphism of the AT1 receptor gene is associated with collagen type I synthesis and myocardial stiffness in hypertensives. J Hypertens 21:2085–2092PubMedGoogle Scholar
  34. Digiesi D, Lenuzza M, Digiese G (2001) Prospects for the use of antioxidant therapy in hypertension. Ann Ital Med Int 16:93–100PubMedGoogle Scholar
  35. Ding Y, Gonick HC, Vaziri ND, Liang K, Wei L (2001) Lead-induced hypertension. III. Increased hydroxyl radical production. Am J Hypertens 14:169–173CrossRefPubMedGoogle Scholar
  36. Dobrian AD, Davies MJ, Schriver SD, Lauterio TJ, Prewitt RL (2001) Oxidative stress in a rat model of obesity-induced hypertension. Hypertension 37:554–560PubMedGoogle Scholar
  37. Droge W (2001) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95Google Scholar
  38. Duerrschmidt N, Wippich N, Goettsch W, Broemme HJ, Morawietz H (2000) Endothelin-1 induces NAD(P)H oxidase in human endothelial cells. Biochem Biophys Res Commun 269:713–717CrossRefPubMedGoogle Scholar
  39. Duffy SJ, Gokce N, Holbrook M, Huang A, Frei B, Keaney JF, Vita JA (1999) Treatment of hypertension with ascorbic acid. Lancet 354:2048–2049CrossRefPubMedGoogle Scholar
  40. Ermak G, Davies KJA (2001) Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38:713–721CrossRefGoogle Scholar
  41. Fortepiani LA, Zhang H, Racusen L, Roberts LJ II, Reckelhoff JF (2003) Characterization of an animal model of postmenopausal hypertension in spontaneously hypertensive rats. Hypertension 41:640–645CrossRefPubMedGoogle Scholar
  42. Fotheby MD, Williams JC, Forster LA, Craner P, Ferns GA (2000) Effect of vitamin C on ambulatory blood pressure and plasma lipids in older patients. J Hypertens 18:411–415CrossRefPubMedGoogle Scholar
  43. Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Invest 47:412–426PubMedGoogle Scholar
  44. Frenoux JM, Noirot B, Prost ED, Madani S, Blond JP, Belleville JL, Prost JL (2002) Very high alpha-tocopherol diet diminishes oxidative stress and hypercoagulation in hypertensive rats but not in normotensive rats. Med Sci Monit 8:BR401–BR407Google Scholar
  45. Fridovich I (1997) Superoxide anion radical, superoxide dismutases, and related matters. J Biol Chem 272:18515–18517CrossRefPubMedGoogle Scholar
  46. Galley HF, Thornton J, Howdle PD, Walker BE, Webster NR (1997) Combination oral antioxidant supplementation reduces blood pressure. Clin Sci (Lond) 92:361–365Google Scholar
  47. Gao YJ, Lee RM (2001) Hydrogen peroxide induces a greater contraction in mesenteric arteries of spontaneously hypertensive rats through thromboxane A(2) production. Br J Pharmacol 134:1639–1646PubMedGoogle Scholar
  48. Gauss KA, Mascolo PL, Siemsen DW, Nelson LK, Bunger PL, Pagano PJ, Quinn MT (2002) Cloning and sequencing of rabbit leukocyte NADPH oxidase genes reveals a unique p67(phox) homolog. J Leukoc Biol 71:319–328PubMedGoogle Scholar
  49. Ghiadoni L, Magagna A, Versari D, Kardasz I, Huang Y, Taddei S, Salvetti A (2003) Different effect of antihypertensive drugs on conduit artery endothelial function. Hypertension 41:1281–1286CrossRefPubMedGoogle Scholar
  50. Gorlach A, Diebold I, Schini-Kerth VB, Berchner-Pfannschmidt U, Roth U, Brandes RP, Kietzmann T, Busse R (2001) Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: role of the p22(phox)-containing NADPH oxidase. Circ Res 89:47–54PubMedGoogle Scholar
  51. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148PubMedGoogle Scholar
  52. Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M (2000a) Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 20:2175–2183PubMedGoogle Scholar
  53. Griendling KK, Sorescu D, Ushio-Fukai M (2000b) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86:494–501PubMedGoogle Scholar
  54. Grote K, Flach I, Luchtefeld M, Akin E, Holland SM, Drexler H, Schieffer B (2003) Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res 92:e80–e86CrossRefPubMedGoogle Scholar
  55. Guzik TJ, Mussa S, Gastaldi D, Sadowski J, Ratnatunga C, Pillai R, Channon KM (2002) Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 105:1656–1562CrossRefPubMedGoogle Scholar
  56. Haddad JJ (2002) Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal 14:879–897CrossRefPubMedGoogle Scholar
  57. Halliwell B (1999) Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic Res 31:261–272PubMedGoogle Scholar
  58. Han D, Antunes F, Canali R, Rettori D, Cadenas E (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563CrossRefPubMedGoogle Scholar
  59. Harrison DG (1997) Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 1997:2153–2157Google Scholar
  60. Higashi Y, Sasaki S, Nakagawa K, Fukuda Y, Matsuura H, Oshima T, Chayama K (2002a) Tetrahydrobiopterin enhances forearm vascular response to acetylcholine in both normotensive and hypertensive individuals. Am J Hypertens 15:326–332CrossRefPubMedGoogle Scholar
  61. Higashi Y, Sasaki S, Nakagawa K, et al (2002b) Endothelial function and oxidative stress in renovascular hypertension. N Engl J Med 346:1954–1962CrossRefPubMedGoogle Scholar
  62. Hilenski LL, Clempus RE, Quinn MT, Lambeth JD, Griendling KK (2004) Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 24:1–8CrossRefGoogle Scholar
  63. Hoagland KM, Maier KG, Roman RJ (2003) Contributions of 20-HETE to the antihypertensive effects of Tempol in Dahl salt-sensitive rats. Hypertension 41:697–702CrossRefPubMedGoogle Scholar
  64. Hong HJ, Hsiao G, Cheng TH, Yen MH (2001) Supplementation with tetrahydrobiopterin suppresses the development of hypertension in spontaneously hypertensive rats. Hypertension 38:1044–1048PubMedGoogle Scholar
  65. HOPE Investigators (2000) Vitamin E supplementation and cardiovascular events in high risk patients. N Engl J Med 342:154–160CrossRefPubMedGoogle Scholar
  66. Jones A, O’Donnell VB, Wood JD (1996) Expression of phagocyte NADPH oxidase components in human endothelial cells. Am J Physiol H1626–H1634Google Scholar
  67. Kamata H, Shibukawa Y, Oka S-I, Hirata H (2000) Epidermal growth factor receptor is modulated by redox through multiple mechanisms. Effects of reductants and H2O2. Eur J Biochem 267:1933–1944CrossRefPubMedGoogle Scholar
  68. Kerr S, Brosnan J, McIntyre M, Reid JL, Dominiczak AF, Hamilton CA (1999) Superoxide anion production is increased in a model of genetic hypertension. Role of endothelium. Hypertension 33:1353–1358PubMedGoogle Scholar
  69. Khaw K-T, Bingham S, Welch A, Luben R, Wareham N, Oakes S, et al (2001) Relation between plasma ascorbic acid and mortality in men and women in EPIC-Norfolk prospective study: a prospective population study. Lancet 357:657–663CrossRefPubMedGoogle Scholar
  70. Kim MY, Sasaki S, Sasazuki S, Okubo S, Hayashi M, Tsugane S (2002) Lack of long-term effect of vitamin C supplementation on blood pressure. Hypertension 40:797–803CrossRefPubMedGoogle Scholar
  71. Kristal B, Shurta-Swirrski R, Chezar J (1998) Participation of peripheral polymorphonuclear leukocytes in the oxidative stress and inflammation in patients with essential hypertension. Am J Hypertens 11:921–928CrossRefPubMedGoogle Scholar
  72. Lacy F, Kailasam MT, O’Connor DT, Schmid-Schonbein GW, Parmer RJ (2000) Plasma hydrogen peroxide production in human essential hypertension: role of heredity, gender, and ethnicity. Hypertension 36:878–884PubMedGoogle Scholar
  73. Landmesser U, Harrison DG (2001) Oxidative stress and vascular damage in hypertension. Coron Artery Dis 12:455–461CrossRefPubMedGoogle Scholar
  74. Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, Holland SM, Harrison DG (2002) Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40:511–515CrossRefPubMedGoogle Scholar
  75. Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111:1201–1209CrossRefPubMedGoogle Scholar
  76. Lassegue B, Clempus RE (2003) Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 285:R277–R297PubMedGoogle Scholar
  77. Lassegue B, Sorescu D, Szocs K, Yin Q, Akers M, Zhang Y, Grant SL, Lambeth JD, Griendling KK (2001) Novel gp91(phox) homologues in vascular smooth muscle cells: Nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 88:888–894PubMedGoogle Scholar
  78. Laursen JB, Rajagopalan S, Galis Z, Tarpey M, Freeman BA, Harrison DG (1997) Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 95:588–593PubMedGoogle Scholar
  79. Lee K, Esselman WJ (2002) Inhibition of PTPS by H2O2 regulates the activation of distinct MAPK pathways. Free Radic Biol Med 33:1121–1132CrossRefPubMedGoogle Scholar
  80. Lee SR, Kwon KS, Kim SR, Rhee SG (1998) Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273:15366–15372CrossRefPubMedGoogle Scholar
  81. Lee SL, Wang WW, Finlay GA, Fanburg BL (1999) Serotonin stimulates MAP kinase activity through the formation of superoxide anion. Am J Physiol Lung Cell Mol Physiol 277:L282–L291Google Scholar
  82. Lee VM, Quinn PA, Jennings SC, Ng LL (2003) Neutrophil activation and production of reactive oxygen species in pre-eclampsia. J Hypertens 21:395–402CrossRefPubMedGoogle Scholar
  83. Leusen JHW, Verhoeven AJ, Roos D (1996) Interactions between the components of the human NADPH oxidase: a review about the intrigues in the phox family. Front Biosci 1:72–90Google Scholar
  84. Li JM, Shah AM (2002) Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells. J Biol Chem 277:19952–19960CrossRefPubMedGoogle Scholar
  85. Li JM, Shah AM (2003) Mechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47phox subunit. J Biol Chem 278:12094–12100Google Scholar
  86. Li AE, Ito H, Rovira II, Kim KS, Takeda K, Yu ZY, Ferrans VJ, Finkel T (1999) A role for reactive oxygen species in endothelial cell anoikis. Circ Res 85:304–310PubMedGoogle Scholar
  87. Li L, Fink GD, Watts SW, Northcott CA, Galligan JJ, Pagano PJ, Chen AF (2003a) Endothelin-1 increases vascular superoxide via endothelin(A)-NADPH oxidase pathway in low-renin hypertension. Circulation 107:1053–1058CrossRefPubMedGoogle Scholar
  88. Li J, Li W, Su J, Liu W, Altura BT, Altura BM (2003b) Hydrogen peroxide induces apoptosis in cerebral vascular smooth muscle cells: possible relation to neurodegenerative diseases and strokes. Brain Res Bull 62:101–106CrossRefPubMedGoogle Scholar
  89. Lip GY, Edmunds E, Nuttall SL, Landray MJ, Blann AD, Beevers DG (2002) Oxidative stress in malignant and non-malignant phase hypertension. J Hum Hypertens 16:333–336CrossRefPubMedGoogle Scholar
  90. List BM, Klosch B, Volker C, Gorren AC, Sessa WC, Werner ER, Kukovetz WR, Schmidt K, Mayer B (1997) Characterization of bovine endothelial nitric oxide synthase as a homodimer with down-regulated uncoupled NADPH oxidase activity: tetrahydrobiopterin binding kinetics and role of haem in dimerization. Biochem J 323:159–165PubMedGoogle Scholar
  91. Lopes LR, Dagher MC, Gutierrez A, Young B, Bouin A-P, Fuchs A, Babior BM (2004) Phosphorylated p40phox as a negative regulator of NADPH oxidase. Biochemistry 43:3723–3730CrossRefPubMedGoogle Scholar
  92. Lounsbury KM, Hu Q, Ziegelstein RC (2000) Calcium signaling and oxidant stress in the vasculature. Free Radic Biol Med 28:1362–1369CrossRefPubMedGoogle Scholar
  93. Luft FC (2001) Mechanisms and cardiovascular damage in hypertension. Hypertension 37:594–598PubMedGoogle Scholar
  94. Manning RD Jr, Meng S, Tian N (2003) Renal and vascular oxidative stress and salt-sensitivity of arterial pressure. Acta Physiol Scand 179:243–250CrossRefPubMedGoogle Scholar
  95. Mantle D, Patel VB, Why HJ, Ahmed S, Rahman I, MacNee W, Wassif WS, Richardson PJ, Preedy VR (2000) Effects of lisinopril and amlodipine on antioxidant status in experimental hypertension. Clin Chim Acta 299:1–10CrossRefPubMedGoogle Scholar
  96. Marumo T, Schini-Kerth VB, Fisslthaler B, Busse R (1997) Platelet-derived growth factor-stimulated superoxide anion production modulates activation of transcription factor NF-kappaB and expression of monocyte chemoattractant protein 1 in human aortic smooth muscle cells. Circulation 96:2361–2367PubMedGoogle Scholar
  97. Meng TC, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9:387–399CrossRefPubMedGoogle Scholar
  98. Milstien S, Katusic Z (1999) Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem Biophys Res Commun 263:681–684CrossRefPubMedGoogle Scholar
  99. Minuz P, Patrignani P, Gaino S, Degan M, Menapace L, Tommasoli R (2002) Increased oxidative stress and platelet activation in patients with hypertension and renovascular disease. Circulation 106:2800–2805CrossRefPubMedGoogle Scholar
  100. Mitchell BM, Dorrance AM, Ergul A, Webb RC (2004) Sepiapterin decreases vasorelaxation in nitric oxide synthase inhibition-induced hypertension. J Cardiovasc Pharmacol 43:93–98CrossRefPubMedGoogle Scholar
  101. Moreno MU, San Jose G, Orbe J, Paramo JA, Beloqui O, Diez J, Zalba G (2003) Preliminary characterisation of the promoter of the human p22(phox) gene: identification of a new polymorphism associated with hypertension. FEBS Lett 542:27–31CrossRefPubMedGoogle Scholar
  102. Mullan B, Young IS, Fee H, McCance DR (2002) Ascorbic acid reduces blood pressure and arterial stiffness in type 2 diabetes. Hypertension 40:804–809CrossRefPubMedGoogle Scholar
  103. Muller DN, Dechend R, Mervaala EMA, Park JK, Schmidt F, Fiebeler, et al (2000) NFκB inhibition ameliorates angiotensin II-induced inflammatory damage in rats. Hypertension 35:193–201PubMedGoogle Scholar
  104. Muzaffar S, Jeremy JY, Angelini GD, Stuart-Smith K, Shukla N (2003) Role of the endothelium and nitric oxide synthases in modulating superoxide formation induced by endotoxin and cytokines in porcine pulmonary arteries. Thorax 58:598–604CrossRefPubMedGoogle Scholar
  105. Nickenig G, Strehlow K, Baumer AT, Baudler S, Wassmann S, Sauer H, Bohm M (2000) Negative feedback regulation of reactive oxygen species on AT1 receptor gene expression. Br J Pharmacol 131:795–803PubMedGoogle Scholar
  106. Ohtahara A, Hisatome I, Yamamoto Y, Furuse M, Sonoyama K, Furuse Y (2001) The release of the substrate for xanthine oxidase in hypertensive patients was suppressed by angiotensin converting enzyme inhibitors and α1-blockers. J Hypertens 19:575–582CrossRefPubMedGoogle Scholar
  107. Park JB, Touyz RM, Chen X, Schiffrin EL (2002) Chronic treatment with a superoxide dismutase mimetic prevents vascular remodeling and progression of hypertension in salt-loaded stroke-prone spontaneously hypertensive rats. Am J Hypertens 15:78–84CrossRefPubMedGoogle Scholar
  108. Podjarny E, Benchetrit S, Rathaus M, Pomeranz A, Rashid G, Shapira J, Bernheim J (2003) Effect of tetrahydrobiopterin on blood pressure in rats after subtotal nephrectomy. Nephron Physiol 94:6–9CrossRefGoogle Scholar
  109. Prabha PS, Das UN, Koratkar R, Sagar PS, Ramesh G (1990) Free radical generation, lipid peroxidation and essential fatty acids in uncontrolled essential hypertension. Prostaglandins Leukot Essent Fatty Acids 41:27–33CrossRefPubMedGoogle Scholar
  110. Privratsky JR, Wold LE, Sowers JR, Quinn MT, Ren J (2003) AT1 blockade prevents glucose-induced cardiac dysfunction in ventricular myocytes: role of the AT1 receptor and NADPH oxidase. Hypertension 42:206–212CrossRefPubMedGoogle Scholar
  111. Rajagopalan S, Kurz S, Munzel T (1996a) Angiotensin II mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations of vasomotor tone. J Clin Invest 97:1916–1923Google Scholar
  112. Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS (1996b) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. J Clin Invest 98:2572–2579PubMedGoogle Scholar
  113. Rao GN, Berk BC (1992) Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res 70:593–599PubMedGoogle Scholar
  114. Reth M (2002) Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol 3:1129–1134CrossRefPubMedGoogle Scholar
  115. Rey FE, Pagano PJ (2002) The reactive adventitia: fibroblast oxidase in vascular function. Arterioscler Thromb Vasc Biol 22:1962–1971CrossRefPubMedGoogle Scholar
  116. Romero JC, Reckelhoff JF (1999) Role of angiotensin and oxidative stress in essential hypertension. Hypertension 34:943–949PubMedGoogle Scholar
  117. Russo C, Olivieri O, Girelli D, Faccini G, Zenari ML, Lombardi S, Corrocher R (1998) Anti-oxidant status and lipid peroxidation in patients with essential hypertension. J Hypertens 16:1267–1271CrossRefPubMedGoogle Scholar
  118. Sagar S, Kallo IJ, Kaul N, Ganguly NK, Sharma BK (1992) Oxygen free radicals in essential hypertension. Mol Cell Biochem 111:103–108PubMedGoogle Scholar
  119. Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11:173–186CrossRefPubMedGoogle Scholar
  120. Schachinger V, Britten MB, Dimmeler S, Zeiher AM (2001) NADH/NADPH oxidase p22 phox gene polymorphism is associated with improved coronary endothelial vasodilator function. Eur Heart J 22:96–101CrossRefPubMedGoogle Scholar
  121. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212CrossRefPubMedGoogle Scholar
  122. Schnackenberg CG, Welch W, Wilcox CS (1999) Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic. Role of nitric oxide. Hypertension 32:59–64Google Scholar
  123. Schuijt MP, Tom B, De Vries R, Saxena PR, Sluiter W, Van Kats JP, Danser AH (2003) Superoxide does not mediate the acute vasoconstrictor effects of angiotensin II: a study in human and porcine arteries. J Hypertens 21:2335–2344CrossRefPubMedGoogle Scholar
  124. Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK (2002) Angiotensin II stimulation of NAD(P)H oxidase activity. Upstream mediators. Circ Res 91:406–413CrossRefPubMedGoogle Scholar
  125. Sharma RC, Hodis HN, Mack WJ (1996) Probucol suppresses oxidant stress in hypertensive arteries. Immunohistochemical evidence. Am J Hypertens 9:577–590CrossRefPubMedGoogle Scholar
  126. Somers MJ, Harrison DG (1999) Reactive oxygen species and the control of vasomotor tone. Curr Hypertens Rep 1:102–108PubMedGoogle Scholar
  127. Sorescu D, Weiss D, Lassegue B, Clempus RE, Szocs K, Sorescu GP, Valppu L, Quinn MT, Lambeth JD, Vega JD, Taylor WR, Griendling KK (2002) Superoxide production and expression of Nox family proteins in human atherosclerosis. Circulation 105:1429–1435CrossRefPubMedGoogle Scholar
  128. Stojiljkovic MP, Lopes HF, Zhang D, Morrow JD, Goodfriend TL, Egan BM (2002) Increasing plasma fatty acids elevates F2-isoprostanes in humans: implications for the cardiovascular risk factor cluster. J Hypertens 20:1215–1221CrossRefPubMedGoogle Scholar
  129. Stralin P, Karlsson K, Johannson BO, Marklund SL (1995) The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol 15:2032–2036PubMedGoogle Scholar
  130. Suematsu M, Suzuki H, Delano FA, Schmid-Schonbein GW (2002) The inflammatory aspect of the microcirculation in hypertension: oxidative stress, leukocytes/endothelial interaction, apoptosis. Microcirculation 9:259–276CrossRefPubMedGoogle Scholar
  131. Suh YA, Arnold RS, Lassegue B (1999) Cell transformation by the superoxide-generating Mox-1. Nature 410:79–82Google Scholar
  132. Szabo C (2003) Multiple pathways of peroxynitrite cytotoxicity. Toxicol Lett 140:105–112CrossRefGoogle Scholar
  133. Taddei S, Virdis A, Ghiadoni L, Magagna A, Salvetti A (1998) Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation 97:2222–2229PubMedGoogle Scholar
  134. Taddei S, Virdis A, Ghiadoni L, Magagna A, Pasini AF, Garbin U, et al (2001) Effect of calcium antagonist or beta blockade treatment on nitric oxide-dependent vasodilation and oxidative stress in essential hypertensive patients. J Hypertens 19:1379–1386CrossRefPubMedGoogle Scholar
  135. Tanito M, Nakamura H, Kwon YW, Teratani A, Masutani H, Shioji K, Kishimoto C, Ohira A, Horie R, Yodoi J (2004) Enhanced oxidative stress and impaired thioredoxin expression in spontaneously hypertensive rats. Antioxid Redox Signal 6:89–97CrossRefPubMedGoogle Scholar
  136. Taniyama Y, Griendling KK (2003) Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42:1075–1081CrossRefPubMedGoogle Scholar
  137. Tojo A, Onozato ML, Kobayashi N, Goto A, Matsuoka H, Fujita T (2002) Angiotensin II and oxidative stress in Dahl salt-sensitive rat with heart failure. Hypertension 40:834–839CrossRefPubMedGoogle Scholar
  138. Torrecillas G, Boyano-Adanez MC, Medina J, Parra T, Griera M, Lopez-Ongil S, Arilla E, Rodriguez-Puyol M, Rodriguez-Puyol D (2001) The role of hydrogen peroxide in the contractile response to angiotensin II. Mol Pharmacol 9:104–112Google Scholar
  139. Torres M (2003) Mitogen-activated protein kinase pathway in redox signaling. Front Biosci 8:369–391Google Scholar
  140. Touyz RM (2000) Oxidative stress and vascular damage in hypertension. Curr Hypertens Rep 2:98–105PubMedGoogle Scholar
  141. Touyz RM (2003a) Recent advances in intracellular signalling in hypertension. Curr Opin Nephrol Hypertens 12:165–174CrossRefPubMedGoogle Scholar
  142. Touyz RM (2003b) Activated oxygen metabolites: do they really play a role in angiotensin II-regulated vascular tone? J Hypertens 21:2235–2238CrossRefPubMedGoogle Scholar
  143. Touyz RM, Schiffrin EL (1999) Ang II-stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells. Hypertension 34:976–982PubMedGoogle Scholar
  144. Touyz RM, Schiffrin EL (2000) Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 52:639–672PubMedGoogle Scholar
  145. Touyz RM, Schiffrin EL (2001) Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways. J Hypertens 19:1245–1254CrossRefGoogle Scholar
  146. Touyz RM, Chen X, He G, Quinn MT, Schiffrin EL (2002a) Expression of a gp91phox-containing leukocyte-type NADPH oxidase in human vascular smooth muscle cells: modulation by Ang II. Circ Res 90:1205–1213CrossRefPubMedGoogle Scholar
  147. Touyz RM, Wu XH, He G, Salomon S, Schiffrin EL (2002b) Increased angiotensin II-mediated Src signaling via epidermal growth factor receptor transactivation is associated with decreased C-terminal Src kinase activity in vascular smooth muscle cells from spontaneously hypertensive rats. Hypertension 39:479–485CrossRefPubMedGoogle Scholar
  148. Touyz RM, Yao G, Schiffrin EL (2003a) c-Src induces phosphorylation and translocation of p47phox: role in superoxide generation by angiotensin II in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 23:981–987CrossRefPubMedGoogle Scholar
  149. Touyz RM, Cruzado M, Tabet F, Yao G, Salomon S, Schiffrin EL (2003b) Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivation. Can J Physiol Pharmacol 81:159–167CrossRefPubMedGoogle Scholar
  150. Touyz RM, Yao G, Viel E, Amiri F, Schiffrin EL (2004) Angiotensin II and endothelin-1 regulate MAP kinases through different redox-dependent mechanisms in human vascular smooth muscle cells. J Hypertens (in press)Google Scholar
  151. Tschudi M, Mesaros S, Luscher TF, Malinski T (1996) Direct in situ measurement of nitric oxide in mesenteric resistance arteries: increased decomposition by superoxide in hypertension. Hypertension 27:32–35PubMedGoogle Scholar
  152. Turpaev KT (2002) Reactive oxygen species and regulation of gene expression. Biochemistry 67:281–292CrossRefPubMedGoogle Scholar
  153. Ushio-Fukai M, Alexander RW, Akers M, Griendling KK (1998) p38 mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem 273:15022–15029CrossRefPubMedGoogle Scholar
  154. Vasquez-Vivar J, Duquaine D, Whitsett J, Kalyanaraman B, Rajagopalan S (2002) Altered tetrahydrobiopterin metabolism in atherosclerosis: implications for use of oxidized tetrahydrobiopterin analogues and thiol antioxidants. Arterioscler Thromb Vasc Biol 22:1655–1661CrossRefPubMedGoogle Scholar
  155. Viedt C, Soto U, Krieger-Brauer HI, Fei J, Elsing C, Kubler W, Kreuzer J (2000) Differential activation of mitogen-activated protein kinases in smooth muscle cells by angiotensin II: involvement of p22phox and reactive oxygen species. Arterioscler Thromb Vasc Biol 20:940–948PubMedGoogle Scholar
  156. Vignais PV (2002) The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59:1428–1459CrossRefPubMedGoogle Scholar
  157. Virdis A, Fritsch Neves M, Amiri F, Viel E, Touyz RM, Schiffrin EL (2002) Spironolactone improves angiotensin-induced vascular changes and oxidative stress. Hypertension 40:504–510CrossRefPubMedGoogle Scholar
  158. Virdis A, Iglarz M, Neves MF, Amiri F, Touyz RM, Rozen R, Schiffrin EL (2003) Effect of hyperhomocystinemia and hypertension on endothelial function in methylenetetrahydrofolate reductase-deficient mice. Arterioscler Thromb Vasc Biol 23:1352–1357CrossRefGoogle Scholar
  159. Virdis A, Neves MF, Amiri F, Touyz RM, Schiffrin EL (2004) Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice. J Hypertens 22:535–542CrossRefPubMedGoogle Scholar
  160. Vivekananthan DP, Penn MS, Sapp SK, Hsu A, Topol EJ (2003) Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 361:2017–2023CrossRefPubMedGoogle Scholar
  161. Wassmann S, Laufs U, Muller K, Konkol C, Ahlbory K, Baumer AT, Linz W, Bohm M, Nickenig G (2002) Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol 22:300–305CrossRefPubMedGoogle Scholar
  162. Welch WJ, Mendonca M, Aslam S, Wilcox CS (2003) Roles of oxidative stress and AT1 receptors in renal hemodynamics and oxygenation in the postclipped 2 K,1C kidney. Hypertension 41:692–696CrossRefPubMedGoogle Scholar
  163. Wilcox CS (2002) Reactive oxygen species: roles in blood pressure and kidney function. Curr Hypert Rep 4:160–166Google Scholar
  164. Wingler K, Wunsch S, Kreutz R, Rothermund L, Paul M, Schmidt HH (2001) Upregulation of the vascular NAD(P)H-oxidase isoforms Nox1 and Nox4 by the renin-angiotensin system in vitro and in vivo. Free Radic Biol Med 31:1456–1464CrossRefPubMedGoogle Scholar
  165. Wu R, Millette E, Wu L, de Champlain J (2001) Enhanced superoxide anion formation in vascular tissues from spontaneously hypertensive and desoxycorticosterone acetate-salt hypertensive rats. J Hypertens 19:741–748CrossRefPubMedGoogle Scholar
  166. Wu R, Lamontagne D, de Champlain J (2002) Antioxidative properties of acetylsalicylic acid on vascular tissues from normotensive and spontaneously hypertensive rats. Circulation 105:387–392CrossRefPubMedGoogle Scholar
  167. Yada T, Shimokawa H, Hiramatsu O, Kajita T, Shigeto F, Goto M, Ogasawara Y, Kajiya F (2003) Hydrogen peroxide, an endogenous endothelium-derived hyperpolarizing factor, plays an important role in coronary autoregulation in vivo. Circulation 107:1040–1045CrossRefPubMedGoogle Scholar
  168. Yamawaki H, Haendeler J, Berk BC (2003) Thioredoxin: a key regulator of cardiovascular homeostasis. Circ Res 93:1029–1033CrossRefPubMedGoogle Scholar
  169. Yang S, Hardaway M, Sun G, Ries WL, Key L Jr (2000) Superoxide generation and tyrosine kinase. Biochem Cell Biol 78:11–17CrossRefPubMedGoogle Scholar
  170. Zafari AM, Ushio-Fukai M, Akers M, Griendling K (1998) Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 32:488–495PubMedGoogle Scholar
  171. Zalba G, Beaumont FJ, San Jose G, Fortuno A, Fortuno MA, Etayo JC, Diez J (2000) Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats. Hypertension 35:1055–1061PubMedGoogle Scholar
  172. Zalba G, San Jose G, Moreno MU, Fortuno MA, Fortuno A, Beaumont FJ, Diez J (2001a) Oxidative stress in arterial hypertension: role of NAD(P)H oxidase. Hypertension 38:1395–1399PubMedGoogle Scholar
  173. Zalba G, San Jose G, Beaumont FJ, Fortuno MA, Fortuno A, Diez J (2001b) Polymorphisms and promoter overactivity of the p22(phox) gene in vascular smooth muscle cells from spontaneously hypertensive rats. Circ Res 88:217–222PubMedGoogle Scholar
  174. Zanzinger J (2002) Mechanisms of action of nitric oxide in the brain stem: role of oxidative stress. Auton Neurosci 98:24–27CrossRefPubMedGoogle Scholar
  175. Zhan CD, Sindhu RK, Vaziri ND (2004) Up-regulation of kidney NAD(P)H oxidase and calcineurin in SHR: reversal by lifelong antioxidant supplementation. Kidney Int 65:219–227CrossRefPubMedGoogle Scholar
  176. Zheng JS, Yang XQ, Lookingland KJ, et al (2003) Gene transfer of human guanosine 5′-triphosphate cyclohydrolase I restores vascular tetrahydrobiopterin level and endothelial function in low renin hypertension. Circulation 108:1238–1245CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Multidisciplinary Research Group on Hypertension, Clinical Research Institute of MontrealUniversity of MontrealMontrealCanada

Personalised recommendations