Histochemistry and Cell Biology

, Volume 121, Issue 6, pp 501–508 | Cite as

Binding of galectin-1 (gal-1) on trophoblast cells and inhibition of hormone production of trophoblast tumor cells in vitro by gal-1

  • Udo Jeschke
  • Toralf Reimer
  • Claudia Bergemann
  • Irmi Wiest
  • Sandra Schulze
  • Klaus Friese
  • Hermann Walzel
Original Paper


Galectin-1 (gal-1), a member of the mammalian β-galactoside-binding proteins, recognizes preferentially Galβ1–4GlcNAc sequences of oligosaccharides associated with several cell surface glycoconjugates. As demonstrated histochemically, the lectin recognizes appropriate glycoepitopes on the syncytiotrophoblast and on chorionic carcinoma cells (BeWo). Freshly isolated trophoblast cells and trophoblast tumor cells Jeg3 did not bind gal-1. BeWo cells in contrast to Jeg3 form a syncytium in vitro and synthesize progesterone as well as hCG. BeWo cells were used as an approach to study the effects of gal-1 on hormone production. The lectin decreased cellular hCG and progesterone production as well as hCGβ gene transcription as measured by real-time RT-PCR. Gal-1 mediated inhibition of cellular progesterone production was reduced in the presence of a Thomsen-Friedenreich (TF)–polyacrylamide conjugate. Inhibition of cellular hCG and progesterone production was also induced by anti-TF monoclonal antibodies. The results demonstrate that ligation of Galβ1–4GlcNAc and Galβ1–3GalNAc (TF) epitopes on BeWo cells may have regulatory effects on hCG and progesterone production.


Galectin-1 Glycotopes Hormone production BeWo cells 


  1. Adams l, Scott GK, Weinberg CS (1996) Biphasic modulation of cell growth by recombinant human galectin-1. Biochim Biophys Acta 1312:137–144CrossRefPubMedGoogle Scholar
  2. Aluvihare VR, Kallikourdis M, Betz AG (2004) Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol 5:266–271CrossRefPubMedGoogle Scholar
  3. Barondes SH, Castronovo V, Cooper DNW, Cummings RD, Drickamer K, Feizi T, Gitt MA, Hirabayashi J, Hughes C, Kasai K-I, Leffler H, Liu F-T, Lotan R, Mercurio AM, Monsigny M, Pillai S, Poirer F, Raz A, Rigby PWJ, Rini JM, Wang JL (1994) Galectins: a family of animal β-galactoside-binding lectins. Cell 76:597–598PubMedGoogle Scholar
  4. Bennett WA, Brackin MN, Long CA, Cowan BD (1995) Immunosuppression by conditioned media derived from a cloned choriocarcinoma cell line in serum-supplemented and defined media. Am J Reprod Immunol 33:108–113PubMedGoogle Scholar
  5. Bergemann C, Reimer T, Muller H, Hosel A, Briese V, Friese K, Jeschke U (2003) Stimulation of hCG protein and mRNA levels in trophoblast tumour cells Jeg3 and BeWo by glycodelin A. Anticancer Res 23:1107–1113PubMedGoogle Scholar
  6. Bevan BH, Kilpatrick DC, Liston WA, Hirabayashi J, Kasai K (1994) Immunohistochemical localization of a beta-d-galactoside-binding lectin at the human maternofetal interface. Histochem J 26:582–586PubMedGoogle Scholar
  7. Blaser C, Kaufmann M, Müller C, Zimmermann C, Wells V, Mallucci L, Pircher H (1998) β-Galactoside-binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells. Eur J Immunol 28:2311–2319PubMedGoogle Scholar
  8. Boorsma DM, Van Bommel J, Vanden Heuvel J (1986) Avidin-HRP conjugates in biotin-avidin immunoenzyme cytochemistry. Histochemistry 84:333–337PubMedGoogle Scholar
  9. Bulla R, Bossi F, Radillo O, de Seta F, Tedesco F (2003) Placental trophoblast and endothelial cells as target of maternal immune response. Autoimmunity 36:11–18CrossRefPubMedGoogle Scholar
  10. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159PubMedGoogle Scholar
  11. Grümmer R, Hohn HP, Denker HW (1990) Choriocarcinoma cell spheroides: an in vitro model for the human trophoblast. Tropho Res 4:97–111Google Scholar
  12. Hafer-Macko C, Pang M, Seilhamer JJ, Baum LG (1996) Galectin-1 is expressed by thymic epithelial cells in myasthenia gravis. Glycoconjugate J 13:591–597Google Scholar
  13. Hammer A, Blaschitz A, Daxböck C, Walcher W, Döhr G (1999) Fas and Fas-ligand are expressed in the uteroplacental unit of first-trimester pregnancy. Am J Reprod Immunol 41:41–51PubMedGoogle Scholar
  14. Hirabayashi J, Kasai K-I (1984) Human placenta β-galactoside-binding lectin. Purification and some properties. Biochem Biophys Res Commun 122:938–944PubMedGoogle Scholar
  15. Hoshina M, Hussa R, Pattillo R, Camel HM, Boime I (1984) The role of trophoblast differentiation in the control of the hCG and hPL genes. Adv Exp Med Biol 176:299–312PubMedGoogle Scholar
  16. Hoshina M, Boothby M, Hussa R, Pattillo R, Camel HM, Boime I (1985) Linkage of human chorionic gonadotrophin and placental lactogen biosynthesis to trophoblast differentiation and tumorigenesis. Placenta 6:163–172PubMedGoogle Scholar
  17. Hughes RC (1992) Lectins as cell adhesion molecules. Curr Opin Struct Biol 2:687–692CrossRefGoogle Scholar
  18. Jeppesen C, Nielsen PE (1989) Photofootprinting of drug-binding sites on DNA using diazo- and azido-9-aminoacridine derivatives. Eur J Biochem 182:437–444PubMedGoogle Scholar
  19. Jeschke U, Richter DU, Hammer A, Briese V, Friese K, Karsten U (2002) Expression of the Thomsen-Friedenreich antigen and of its putative carrier protein mucin 1 in the human placenta and in trophoblast cells in vitro. Histochem Cell Biol 117:219–226CrossRefPubMedGoogle Scholar
  20. Karre K (2002) NK cells, MHC class I molecules and the missing self. Scand J Immunol 55:221–228CrossRefPubMedGoogle Scholar
  21. Karsten U, Butschak G, Cao Y, Goletz S, Hanisch FG (1995) A new monoclonal antibody (A78-G/A7) to the Thomsen-Friedenreich pan-tumor antigen. Hybridoma 14:37–44PubMedGoogle Scholar
  22. La M, Cao TV, Cerchiaro G, Chilton K, Hirabayashi J, Kasai K, Oliani SM, Chernajovsky Y, Perretti M (2003) A novel biological activity for galectin-1: inhibition of leukocyte-endothelial cell interactions in experimental inflammation. Am J Pathol 163:1505–1515PubMedGoogle Scholar
  23. Offner H, Celnik B, Bringman TS, Casentini-Borocz D, Nedwin GE, Vandenbark AA (1990) Recombinant human β-galactoside binding lectin suppresses clinical and histological signs of experimental autoimmune encephalomyelitis. J Neuroimmunol 28:177–184CrossRefPubMedGoogle Scholar
  24. Pattillo RA, Gey GO, Delfs E, Mattingly RF (1968) Human hormone production in vitro. Science 159:1467–1469PubMedGoogle Scholar
  25. Perillo NL, Pace KE, Seilhamer JJ, Baum LG (1995) Apoptosis of T cells mediated by galectin-1. Nature 378:736–739PubMedGoogle Scholar
  26. Poirier F, Timmons PM, Chan CT, Guenet JL, Rigby PW (1992) Expression of the L14 lectin during mouse embryogenesis suggests multiple roles during pre- and post-implantation development. Development 115:143–155PubMedGoogle Scholar
  27. Raz A, Lotan R (1987) Endogenous galactoside-binding lectins: a new class of functional tumor cell surface molecules related to metastasis. Cancer Metastasis Rev 6:433–452PubMedGoogle Scholar
  28. Reimer T, Koczan D, Briese V, Friese K, Richter D, Thiesen HJ, Jeschke U (2000a) Absolute quantification of human chorionic gonadotropin-β mRNA with TaqMan detection. Mol Biotechnol 14:47–57PubMedGoogle Scholar
  29. Reimer T, Koczan D, Müller H, Friese K, Krause A, Thiesen HJ, Gerber B (2000b) Human chorionic gonadotropin-β transcripts correlate with progesterone receptor values in breast carcinomas. J Mol Endocrinol 24:33–41PubMedGoogle Scholar
  30. Richter DU, Jeschke U, Makovitzky J, Goletz S, Karsten U, Briese V, Friese K (2000) Expression of the Thomsen-Friedenreich (TF) antigen in the human placenta. Anticancer Res 20:5129–5133PubMedGoogle Scholar
  31. Vicovac L, Jankovic M, Cuperlovic M (1998) Galectin-1 and -3 in cells of the first trimester placental bed. Hum Reprod 13:730–735CrossRefPubMedGoogle Scholar
  32. Walzel H, Neels P, Bremer H, Kohler H, Raab N, Barten M, Brock J (1995) Immunohistochemical and glycohistochemical localization of the beta-galactoside-binding S-type lectin in human placenta. Acta Histochem 97:33–42PubMedGoogle Scholar
  33. Walzel H, Schulz U, Neels P, Brock J (1999) Galectin-1, a natural ligand for the receptor-type protein tyrosine phosphatase CD45. Immunol Lett 67:193–202CrossRefPubMedGoogle Scholar
  34. Walzel H, Blach M, Hirabayashi J, Kasai K-I, Brock J (2000) Involvement of CD2 and CD3 in galectin-1 induced signaling in human Jurkat T-cells. Glycobiology 10:131–140CrossRefPubMedGoogle Scholar
  35. Wells V, Mallucci L (1991) Identification of an autocrine negative growth factor: mouse β-galactoside-binding protein is a cytostatic factor and cell growth regulator. Cell 64:91–97CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Udo Jeschke
    • 1
  • Toralf Reimer
    • 2
  • Claudia Bergemann
    • 2
  • Irmi Wiest
    • 1
  • Sandra Schulze
    • 1
  • Klaus Friese
    • 1
  • Hermann Walzel
    • 3
  1. 1.Department of Obstetrics and GynaecologyLudwig Maximilians University of MunichMunichGermany
  2. 2.Department of Obstetrics and GynaecologyUniversity of RostockRostockGermany
  3. 3.Institute of Medical Biochemistry and Molecular BiologyUniversity of RostockRostockGermany

Personalised recommendations