Histochemistry and Cell Biology

, Volume 121, Issue 3, pp 201–207 | Cite as

Localization of the Na+-d-glucose cotransporter SGLT1 in the blood-brain barrier

  • Katrin Elfeber
  • Alwin Köhler
  • Michael Lutzenburg
  • Christina Osswald
  • Hans-Joachim Galla
  • Otto W. Witte
  • Hermann Koepsell
Original Paper


Immunoreactivity of the Na+-d-glucose cotransporter SGLT1 was demonstrated in intracerebral capillaries of rat and pig. Immunostaining suggested that SGLT1 is located in the luminal membrane of the endothelial cells and in intracellular vesicles. Using in situ hybridization, SGLT1 mRNA was not detectable in intracerebral capillaries of non-treated or sham-operated Wistar rats. However, 1 day after a transient occlusion of the right middle cerebral artery, SGLT1 mRNA was detected in capillaries of both brain hemispheres. Expression of SGLT1 was also demonstrated in primary cultures of capillary endothelial cells from pig using polymerase chain reaction after reverse transcription and western blotting. The data suggest that SGLT1 participates in transport of d-glucose across the blood-brain barrier and is upregulated after brain ischemia and reperfusion.


Sugar transport Sodium d-glucose cotransporter SGLT1 Blood-brain barrier Brain ischemia 


  1. Bedersen JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17:472–476PubMedGoogle Scholar
  2. Berna N, Arnould T, Remacle J, Michiels C (2002) Hypoxia-induced increase in intracellular calcium concentration in endothelial cells: role of the Na+-glucose cotransporter. J Cell Biochem 84:115–131CrossRefGoogle Scholar
  3. Bormans GM, van Oosterwyck G, de Groot TJ, Veyhl M, Mortelmans L, Verbruggen AM, Koepsell H (2003) Synthesis and biologic evaluation of 11C-methyl-d-glucoside, a tracer of the sodium-dependent glucose transporters. J Nucl Med 44:1075–1081PubMedGoogle Scholar
  4. Elfeber K, Stümpel F, Gorboulev V, Mattig S, Deussen A, Kaissling B, Koepsell H (2004) Na+-d-glucose cotransporter in muscle capillaries increases glucose permeability. Biochim Biophys Res Commun 314:301–305CrossRefGoogle Scholar
  5. Farrell CL, Pardridge WM (1991) Blood-brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes: an electron microscopic immunogold study. Proc Natl Acad Sci U S A 88:5779–5783PubMedGoogle Scholar
  6. Groot de TJ, Veyhl M, Terwinghe C, Vanden Bempt V, Dupont P, Mortelmans L, Verbruggen AM, Bormans GM, Koepsell H (2003) Synthesis of 18F-fluoroalkyl-β-d-glucosides and their evaluation as tracers for sodium-dependent glucose transporters. J Nucl Med 44:1973–1981PubMedGoogle Scholar
  7. Harik SI, Behmand RA, LaManna JC (1994) Hypoxia increases glucose transport at blood-brain barrier in rats. J Appl Physiol 77:896–901PubMedGoogle Scholar
  8. Hawkins RA, Mans AM, Davis WD, Hibbard LS, Lu DM (1983) Glucose availability to individual cerebral structures is correlated to glucose metabolism. J Neurochem 40:1013–1018PubMedGoogle Scholar
  9. Hediger MA, Rhoads DB (1994) Molecular physiology of sodium-glucose cotransporters. Physiol Rev 74:993–1026PubMedGoogle Scholar
  10. Hirayama BA, Wright EM (1992) Glycosylation of the rabbit intestinal brush border Na+/glucose cotransporter. Biochim Biophys Acta 1103:37–44CrossRefPubMedGoogle Scholar
  11. Karnovsky MJ (1967) The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol 35:213–236PubMedGoogle Scholar
  12. Kipp H, Khoursandi S, Scharlau D, Kinne RKH (2003) More than apical: distribution of SGLT1 in Caco-2 cells. Am J Physiol Cell Physiol 285:C737–C749PubMedGoogle Scholar
  13. Korn T, Kühlkamp T, Track C, Schatz I, Baumgarten K, Gorboulev V, Koepsell H (2001) The plasma membrane-associated protein RS1 decreases transcription of the transporter SGLT1 in confluent LLC-PK1 cells. J Biol Chem 276:45330–45340CrossRefPubMedGoogle Scholar
  14. Kyhse-Andersen J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10:203–209PubMedGoogle Scholar
  15. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedGoogle Scholar
  16. Lee WS, Kanai Y, Wells RG, Hediger MA (1994) The high affinity Na+/glucose cotransporter. Re-evaluation of function and distribution of expression. J Biol Chem 269:12032–12039PubMedGoogle Scholar
  17. Longa LZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91PubMedGoogle Scholar
  18. Maher F, Vannucci SJ, Simpson IA (1994) Glucose transporter proteins in brain. FASEB J 8:1003–1011PubMedGoogle Scholar
  19. Morgan DJ (1996) Permeability of myocardial capillaries to hydrophilic drugs: the paracellular pathway. Clin Exp Pharmacol Physiol 23:975–979PubMedGoogle Scholar
  20. Nishizaki T, Matsuoka T (1998) Low glucose enhances Na+/glucose transport in bovine brain artery endothelial cells. Stroke 29:844–849PubMedGoogle Scholar
  21. Nishizaki T, Kammesheidt A, Sumikawa K, Asada T, Okada Y (1995) A sodium- and energy-dependent glucose transporter with similarities to SGLT1–2 is expressed in bovine cortical vessels. Neurosci Res 22:13–22CrossRefPubMedGoogle Scholar
  22. Ohta T, Isselbacher KJ, Rhoads DB (1990) Regulation of glucose transporters in LLC-PK1 cells: effects of d-glucose and monosaccharides. Mol Cell Biol 10:6491–6499PubMedGoogle Scholar
  23. Poppe R, Karbach U, Gambaryan S, Wiesinger H, Lutzenburg M, Kraemer M, Witte OW, Koepsell H (1997) Expression of the Na+-d-glucose cotransporter SGLT1 in neurons. J Neurochem 69:84–94PubMedGoogle Scholar
  24. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137PubMedGoogle Scholar
  25. Sauer GA, Nagel G, Koepsell H, Bamberg E, Hartung K (2000) Voltage and substrate dependence of the inverse transport mode of the rabbit Na+/glucose cotransporter (SGLT1). FEBS Lett 469:98–100CrossRefPubMedGoogle Scholar
  26. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916PubMedGoogle Scholar
  27. Takata K, Kasahara T, Kasahara M, Ezaki O, Hirano H (1992) Immunohistochemical localization of Na+-dependent glucose transporter in rat jejunum. Cell Tissue Res 267:3–9PubMedGoogle Scholar
  28. Tarpey PS, Wood IS, Shirazi-Beechey SP, Beechey RB (1995) Amino acid sequence and the cellular location of the Na+-dependent d-glucose symporters (SGLT1) in the ovine enterocyte and the parotid acinar cells. Biochem J 312:293–300PubMedGoogle Scholar
  29. Tewes B, Franke H, Hellwig S, Hoheisel D, Decker S, Griesche D, Tilling T, Wegener J, Galla H-J (1997) Preparation of endothelial cells in primary cultures obtained from the brains of 6-month-old pigs. In: Boer AG de, Sutano W (eds) Drug transport across the blood-brain barrier (BBB): in vivo and in vitro techniques. Harwood Academic, Amsterdam, pp 91–97Google Scholar
  30. Thorens B (1993) Facilitated glucose transporters in epithelial cells. Annu Rev Physiol 55:591–608CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Katrin Elfeber
    • 1
  • Alwin Köhler
    • 1
  • Michael Lutzenburg
    • 2
  • Christina Osswald
    • 1
  • Hans-Joachim Galla
    • 3
  • Otto W. Witte
    • 2
  • Hermann Koepsell
    • 1
  1. 1.Institute of Anatomy and Cell BiologyUniversity WürzburgWürzburgGermany
  2. 2.Clinic of NeurologyUniversity DüsseldorfDüsseldorfGermany
  3. 3.Institute of BiochemistryMünsterGermany

Personalised recommendations