Advertisement

Novel biomarker of sphericity and cylindricity indices in volume-rendering optical coherence tomography angiography in normal and diabetic eyes: a preliminary study

  • Peter M. MalocaEmail author
  • Richard F. Spaide
  • Emanuel Ramos de Carvalho
  • Harald P. Studer
  • Pascal W Hasler
  • Hendrik P. N. Scholl
  • Tjebo F. C. Heeren
  • Julia Schottenhamml
  • Konstantinos Balaskas
  • Adnan Tufail
  • Catherine Egan
  • IOB study group
Retinal Disorders

Abstract

Purpose

Preliminary to evaluate geometric indices (vessel sphericity and cylindricity) for volume-rendered optical coherence tomography angiography (OCTA) in healthy and diabetic eyes.

Methods

Twenty-six eyes of 13 healthy subjects and 12 eyes of patients with central ischemic, non-proliferative diabetic retinopathy were included. OCTA volume and surface area of the foveal vessels were measured and compared to determine OCTA sphericity and cylindricity indices and surface efficiency (SE).

Results

The overall average OCTA volume in healthy was 0.49 ± 0.09 mm3 (standard deviation [SD]), compared to 0.44 ± 0.07 mm3 (SD) in the diabetic eyes (difference in means 0.06 mm3, p = 0.054). The overall average OCTA surface area in the healthy eyes was 87.731 ± 9.51 mm2 (SD), compared to 76.65 ± 13.67 mm2 (SD) in the diabetic eyes (difference in means 11.08 mm2, p = 0.021). In relation to total foveolar tissue volume, the proportion of blood vessels was 22% in healthy individuals and only 20% in diabetics. The difference between the groups was more pronounced with respect to the total OCTA surface area, with a decrease of 13% in diabetics. A diabetic eye was most likely using geometric vessel indices analysis if the sphericity value was ≥ 0.190, with a cylindricity factor of ≥ 0.001. Reproducibility of the method was good.

Conclusions

A method for OCTA surface area and volume measurements was developed. The application of the novel OCTA sphericity and cylindricity indices could be suitable as temporal biomarker to characterize stable disease or disease progression and may contribute to a better understanding in the evolution of diabetic retinopathy.

Keywords

Diabetes Retina Optical coherence tomography angiography Volume-rendering Sphericity Cylindricity 

Notes

Compliance with ethical standards

Conflict of interest

Peter Maloca is a consultant at ZEISS FORUM. Catherine Egan and Adnan Tufail received a financial grant from the National Institute for Health Research (NIHR) Biomedical Research Centre, based at Moorfields Eye Hospital, and also from the NHS Foundation Trust and the UCL Institute of Ophthalmology. Adnan Tufail is employed is a consultant for Heidelberg Engineering and Optovue. Richard Spaide and Peter Maloca are consultant for Topcon. Richard Spaide holds the patent for Frangi vessel segmentation. The funding organizations had no role in the design or conduct of the current study. The views expressed are those of the authors and not necessarily those of the National Eye Institute, the NHS, the NIHR, or the Department of Health.

Dr. Hendrik Scholl is supported by the Foundation Fighting Blindness Clinical Research Institute (FFB CRI); Shulsky Foundation, New York, NY; National Centre of Competence in Research (NCCR) Molecular Systems Engineering (University of Basel and ETH Zürich); Swiss National Science Foundation; and Wellcome Trust.

Dr. Scholl is a paid consultant of the following entities: Boehringer Ingelheim Pharma GmbH & Co. KG; Gerson Lehrman Group; and Guidepoint.

Dr. Scholl is member of the Scientific Advisory Board of the Astellas Institute for Regenerative Medicine; Gensight Biologics; Intellia Therapeutics, Inc.; Ionis Pharmaceuticals, Inc.; ReNeuron Group Plc/Ora Inc.; Pharma Research & Early Development (pRED) of F. Hoffmann-La Roche Ltd.; and Vision Medicines, Inc.

Dr. Scholl is member of the Data Monitoring and Safety Board/Committee of the following entities: Genentech Inc./F. Hoffmann-La Roche Ltd. and ReNeuron Group Plc/Ora Inc. Dr. Scholl is member of the steering committee of the following entities: Novo Nordisk (FOCUS trial).

Dr. Scholl is co-director of the Institute of Molecular and Clinical Ophthalmology Basel (IOB) which is constituted as a nonprofit foundation and receives funding from the University of Basel, the University Hospital Basel, Novartis, and the government of Basel-Stadt.

These arrangements have been reviewed and approved by the Johns Hopkins University in accordance with its conflict of interest policies. Johns Hopkins University and Bayer Pharma AG have an active research collaboration and option agreement. These arrangements have also been reviewed and approved by the University of Basel (Universitätsspital Basel, USB) in accordance with its conflict of interest policies.

Dr. Hendrik Scholl is principal investigator of grants at the USB sponsored by the following entity: Acucela Inc.; Aegerion Pharmaceuticals (Novelion Therapeutics); Kinarus AG; NightstaRx Ltd.; Ophthotech Corporation; and Spark Therapeutics England, Ltd. Grants at USB are negotiated and administered by the institution (USB) which receives them on its proper accounts. Individual investigators who participate in the sponsored project(s) are not directly compensated by the sponsor but may receive salary or other support from the institution to support their effort on the project(s).

Others: None. This does not alter our adherence to Graefe’s policies on sharing data and materials. The mentioned institutions had no role in the design or conduct of this study.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Wang RK, An L, Francis P, Wilson DJ (2010) Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. Opt Lett 35(9):1467–1469.  https://doi.org/10.1364/ol.35.001467 CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Wang RK, Jacques SL, Ma Z, Hurst S, Hanson SR, Gruber A (2007) Three dimensional optical angiography. Opt Express 15(7):4083–4097CrossRefGoogle Scholar
  3. 3.
    Spaide RF, Klancnik JM Jr, Cooney MJ (2015) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA ophthalmology 133(1):45–50.  https://doi.org/10.1001/jamaophthalmol.2014.3616 CrossRefGoogle Scholar
  4. 4.
    Coscas F, Sellam A, Glacet-Bernard A, Jung C, Goudot M, Miere A, Souied EH (2016) Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Investigative ophthalmology & visual science 57(9):Oct211-223.  https://doi.org/10.1167/iovs.15-18793 CrossRefGoogle Scholar
  5. 5.
    Bradley PD, Sim DA, Keane PA, Cardoso J, Agrawal R, Tufail A, Egan CA (2016) The evaluation of diabetic macular ischemia using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57(2):626–631.  https://doi.org/10.1167/iovs.15-18034 CrossRefGoogle Scholar
  6. 6.
    Hwang TS, Gao SS, Liu L, Lauer AK, Bailey ST, Flaxel CJ, Wilson DJ, Huang D, Jia Y (2016) Automated quantification of capillary nonperfusion using optical coherence tomography angiography in diabetic retinopathy. JAMA Ophthalmol 134(4):367–373.  https://doi.org/10.1001/jamaophthalmol.2015.5658 CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Al-Sheikh M, Akil H, Pfau M, Sadda SR (2016) Swept-source OCT angiography imaging of the foveal avascular zone and macular capillary network density in diabetic retinopathy. Invest Ophthalmol Vis Sci 57(8):3907–3913.  https://doi.org/10.1167/iovs.16-19570 CrossRefGoogle Scholar
  8. 8.
    Johannesen SK, Viken JN, Vergmann AS, Grauslund J (2019) Optical coherence tomography angiography and microvascular changes in diabetic retinopathy: a systematic review. Acta Ophthalmol 97(1):7–14.  https://doi.org/10.1111/aos.13859 CrossRefGoogle Scholar
  9. 9.
    Agemy SA, Scripsema NK, Shah CM, Chui T, Garcia PM, Lee JG, Gentile RC, Hsiao YS, Zhou Q, Ko T, Rosen RB (2015) Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina (Philadelphia, Pa) 35(11):2353–2363.  https://doi.org/10.1097/iae.0000000000000862 CrossRefGoogle Scholar
  10. 10.
    Spaide RF (2015) Volume-rendered angiographic and structural optical coherence tomography. Retina (Philadelphia, Pa) 35(11):2181–2187.  https://doi.org/10.1097/iae.0000000000000764 CrossRefGoogle Scholar
  11. 11.
    Spaide RF (2015) Volume-rendered optical coherence tomography of diabetic retinopathy pilot study. Am J Ophthalmol 160(6):1200–1210.  https://doi.org/10.1016/j.ajo.2015.09.010 CrossRefGoogle Scholar
  12. 12.
    Izumo M, Lancellotti P, Suzuki K, Kou S, Shimozato T, Hayashi A, Akashi YJ, Osada N, Omiya K, Nobuoka S, Ohtaki E, Miyake F (2009) Three-dimensional echocardiographic assessments of exercise-induced changes in left ventricular shape and dyssynchrony in patients with dynamic functional mitral regurgitation. European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of Cardiology 10(8):961–967.  https://doi.org/10.1093/ejechocard/jep114 CrossRefGoogle Scholar
  13. 13.
    Grande Gutierrez N, Shirinsky O, Gagarina N, Lyskina G, Fukazawa R, Ogawa S, Burns JC, Marsden AL, Kahn AM (2017) Assessment of coronary artery aneurysms caused by Kawasaki disease using transluminal attenuation gradient analysis of computerized tomography angiograms. Am J Cardiol 120(4):556–562.  https://doi.org/10.1016/j.amjcard.2017.05.025 CrossRefGoogle Scholar
  14. 14.
    Talu S, Stach S, Calugaru DM, Lupascu CA, Nicoara SD (2017) Analysis of normal human retinal vascular network architecture using multifractal geometry. Int J Ophthalmol 10(3):434–438.  https://doi.org/10.18240/ijo.2017.03.17 CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Talu S, Calugaru DM, Lupascu CA (2015) Characterisation of human non-proliferative diabetic retinopathy using the fractal analysis. Int J Ophthalmol 8(4):770–776.  https://doi.org/10.3980/j.issn.2222-3959.2015.04.23 CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Stanton AV, Wasan B, Cerutti A, Ford S, Marsh R, Sever PP, Thom SA, Hughes AD (1995) Vascular network changes in the retina with age and hypertension. J Hypertens 13(12 Pt 2):1724–1728Google Scholar
  17. 17.
    Le D, Alam M, Miao BA, Lim JI, Yao X (2019) Fully automated geometric feature analysis in optical coherence tomography angiography for objective classification of diabetic retinopathy. Biomed Optics Express 10(5):2493–2503.  https://doi.org/10.1364/boe.10.002493 CrossRefGoogle Scholar
  18. 18.
    Chen Z, Huang D, Izatt JA, Wang RK, Werner JS, Yasuno Y (2016) Re: Spaide et al.: volume-rendering optical coherence tomography angiography of macular telangiectasia type 2 (ophthalmology 2015;122:2261-9). Ophthalmology 123(3):e24.  https://doi.org/10.1016/j.ophtha.2015.10.013 CrossRefGoogle Scholar
  19. 19.
    Spaide RF (2016) Volume-rendered optical coherence tomography of retinal vein occlusion pilot study. Am J Ophthalmol 165:133–144.  https://doi.org/10.1016/j.ajo.2016.02.037 CrossRefGoogle Scholar
  20. 20.
    Maloca P, Gyger C, Schoetzau A, Hasler PW (2015) Ultra-short-term reproducibility of speckle-noise freed fluid and tissue compartmentalization of the choroid analyzed by standard OCT. Transl Vision Sci Technol 4(6):3.  https://doi.org/10.1167/tvst.4.6.3 CrossRefGoogle Scholar
  21. 21.
    Sull AC, Vuong LN, Price LL, Srinivasan VJ, Gorczynska I, Fujimoto JG, Schuman JS, Duker JS (2010) Comparison of spectral/Fourier domain optical coherence tomography instruments for assessment of normal macular thickness. Retina (Philadelphia, Pa) 30(2):235–245.  https://doi.org/10.1097/IAE.0b013e3181bd2c3b CrossRefGoogle Scholar
  22. 22.
    Ploner SB, Moult EM, Choi W, Waheed NK, Lee B, Novais EA, Cole ED, Potsaid B, Husvogt L, Schottenhamml J, Maier A, Rosenfeld PJ, Duker JS, Hornegger J, Fujimoto JG (2016) Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis. Retina (Philadelphia, pa) 36(Suppl 1):S118–S126.  https://doi.org/10.1097/iae.0000000000001328 CrossRefGoogle Scholar
  23. 23.
    Bernucci MT, Merkle CW, Srinivasan VJ (2018) Investigation of artifacts in retinal and choroidal OCT angiography with a contrast agent. Biomed Optics Express 9(3):1020–1040.  https://doi.org/10.1364/boe.9.001020 CrossRefGoogle Scholar
  24. 24.
    Fouad A, Pfefer TJ, Chen CW, Gong W, Agrawal A, Tomlins PH, Woolliams PD, Drezek RA, Chen Y (2014) Variations in optical coherence tomography resolution and uniformity: a multi-system performance comparison. Biomedical optics express 5(7):2066–2081.  https://doi.org/10.1364/boe.5.002066 CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Spaide RF, Fujimoto JG, Waheed NK (2015) Image artifacts in optical coherence tomography angiography. Retina (Philadelphia, Pa) 35(11):2163–2180.  https://doi.org/10.1097/iae.0000000000000765 CrossRefGoogle Scholar
  26. 26.
    Spaide RF, Fujimoto JG, Waheed NK (2015) Optical coherence tomography angiography. Retina (Philadelphia, Pa) 35(11):2161–2162.  https://doi.org/10.1097/iae.0000000000000881 CrossRefGoogle Scholar
  27. 27.
    Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G (2017) Optical coherence tomography angiography. Prog Retin Eye Res.  https://doi.org/10.1016/j.preteyeres.2017.11.003 CrossRefGoogle Scholar
  28. 28.
    Zuiderveld K (1994) Contrast limited adaptive histograph equalization, vol 1994. Graphic Gems IV San Diego: Academic Press Professional, pp 474–485Google Scholar
  29. 29.
    Frangi AF, Niessen WJ, Vincken KL, Viergever MA Multiscale vessel enhancement filtering. In: Berlin, Heidelberg, 1998. Medical image computing and computer-assisted intervention — MICCAI’98. Springer, Berlin Heidelberg, pp 130–137CrossRefGoogle Scholar
  30. 30.
    Kagemann L, Wollstein G, Ishikawa H, Sigal IA, Folio LS, Xu J, Gong H, Schuman JS (2011) 3D visualization of aqueous humor outflow structures in-situ in humans. Exp Eye Res 93(3):308–315.  https://doi.org/10.1016/j.exer.2011.03.019 CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Maloca PM, Spaide RF, Rothenbuehler S, Scholl HPN, Heeren T, Ramos de Carvalho JE, Okada M, Hasler PW, Egan C, Tufail A (2019) Enhanced resolution and speckle-free three-dimensional printing of macular optical coherence tomography angiography. Acta Ophthalmol 97(2):e317–e319.  https://doi.org/10.1111/aos.13567 CrossRefGoogle Scholar
  32. 32.
    Maloca PM, Tufail A, Hasler PW, Rothenbuehler S, Egan C, Ramos de Carvalho JE, Spaide RF (2019) 3D printing of the choroidal vessels and tumours based on optical coherence tomography. Acta Ophthalmol 97(2):e313–e316.  https://doi.org/10.1111/aos.13637 CrossRefGoogle Scholar
  33. 33.
    Kassab GS (2006) Biomechanics of the cardiovascular system: the aorta as an illustratory example. J R Soc Interface 3(11):719–740.  https://doi.org/10.1098/rsif.2006.0138 CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Emami A (06/2014) 360 ° Industrial Design Grundlagen der analytischen ProduktgestaltungGoogle Scholar
  35. 35.
    Cicchetti DV (1994) Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess 6(4):284–290.  https://doi.org/10.1037/1040-3590.6.4.284 CrossRefGoogle Scholar
  36. 36.
    Ishibazawa A, Nagaoka T, Takahashi A, Omae T, Tani T, Sogawa K, Yokota H, Yoshida A (2015) Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol 160(1):35-44.e31.  https://doi.org/10.1016/j.ajo.2015.04.021 CrossRefGoogle Scholar
  37. 37.
    Samara WA, Shahlaee A, Adam MK, Khan MA, Chiang A, Maguire JI, Hsu J, Ho AC (2017) Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity. Ophthalmology 124(2):235–244.  https://doi.org/10.1016/j.ophtha.2016.10.008 CrossRefPubMedGoogle Scholar
  38. 38.
    Hwang TS, Jia Y, Gao SS, Bailey ST, Lauer AK, Flaxel CJ, Wilson DJ, Huang D (2015) Optical coherence tomography angiography features of diabetic retinopathy. Retina (Philadelphia, Pa) 35(11):2371–2376.  https://doi.org/10.1097/iae.0000000000000716 CrossRefGoogle Scholar
  39. 39.
    Di G, Weihong Y, Xiao Z, Zhikun Y, Xuan Z, Yi Q, Fangtian D (2016) A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 254(5):873–879.  https://doi.org/10.1007/s00417-015-3143-7 CrossRefPubMedGoogle Scholar
  40. 40.
    Couturier A, Mane V, Bonnin S, Erginay A, Massin P, Gaudric A, Tadayoni R (2015) Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography. Retina (Philadelphia, Pa) 35(11):2384–2391.  https://doi.org/10.1097/iae.0000000000000859 CrossRefGoogle Scholar
  41. 41.
    Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH (2016) Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Investigative ophthalmology & visual science 57(9):Oct362-370.  https://doi.org/10.1167/iovs.15-18904 CrossRefGoogle Scholar
  42. 42.
    Zhang M, Hwang TS, Dongye C, Wilson DJ, Huang D, Jia Y (2016) Automated quantification of nonperfusion in three retinal plexuses using projection-resolved optical coherence tomography angiography in diabetic retinopathy. Invest Ophthalmol Vis Sci 57(13):5101–5106.  https://doi.org/10.1167/iovs.16-19776 CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Dimitrova G, Chihara E, Takahashi H, Amano H, Okazaki K (2017) Author response: quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Invest Ophthalmol Vis Sci 58(3):1767.  https://doi.org/10.1167/iovs.17-21706 CrossRefGoogle Scholar
  44. 44.
    Cao D, Yang D, Huang Z, Zeng Y, Wang J, Hu Y, Zhang L (2018) Optical coherence tomography angiography discerns preclinical diabetic retinopathy in eyes of patients with type 2 diabetes without clinical diabetic retinopathy. Acta Diabetol.  https://doi.org/10.1007/s00592-018-1115-1 CrossRefGoogle Scholar
  45. 45.
    An D, Balaratnasingam C, Heisler M, Francke A, Ju M, McAllister IL, Sarunic M, Yu DY (2018) Quantitative comparisons between optical coherence tomography angiography and matched histology in the human eye. Exp Eye Res 170:13–19.  https://doi.org/10.1016/j.exer.2018.02.006 CrossRefGoogle Scholar
  46. 46.
    Tan PE, Balaratnasingam C, Xu J, Mammo Z, Han SX, Mackenzie P, Kirker AW, Albiani D, Merkur AB, Sarunic MV, Yu DY (2015) Quantitative comparison of retinal capillary images derived by speckle variance optical coherence tomography with histology. Invest Ophthalmol Vis Sci 56(6):3989–3996.  https://doi.org/10.1167/iovs.14-15879 CrossRefGoogle Scholar
  47. 47.
    Dong J, Jia YD, Wu Q, Zhang S, Jia Y, Huang D, Wang X (2017) Interchangeability and reliability of macular perfusion parameter measurements using optical coherence tomography angiography. Br J Ophthalmol 101(11):1542–1549.  https://doi.org/10.1136/bjophthalmol-2016-309441 CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Guo J, She X, Liu X, Sun X (2017) Repeatability and reproducibility of foveal avascular zone area measurements using AngioPlex spectral domain optical coherence tomography angiography in healthy subjects. Ophthalmologica Journal international d'ophtalmologie International journal of ophthalmology Zeitschrift fur Augenheilkunde 237(1):21–28.  https://doi.org/10.1159/000453112 CrossRefGoogle Scholar
  49. 49.
    Carpineto P, Mastropasqua R, Marchini G, Toto L, Di Nicola M, Di Antonio L (2016) Reproducibility and repeatability of foveal avascular zone measurements in healthy subjects by optical coherence tomography angiography. Br J Ophthalmol 100(5):671–676.  https://doi.org/10.1136/bjophthalmol-2015-307330 CrossRefGoogle Scholar
  50. 50.
    You Q, Freeman WR, Weinreb RN, Zangwill L, Manalastas PIC, Saunders LJ, Nudleman E (2017) Reproducibility of vessel density measurement with optical coherence tomography angiography in eyes with and without retinopathy. Retina (Philadelphia, Pa) 37(8):1475–1482.  https://doi.org/10.1097/iae.0000000000001407 CrossRefGoogle Scholar
  51. 51.
    Shiihara H, Sakamoto T, Yamashita T, Kakiuchi N, Otsuka H, Terasaki H, Sonoda S (2017) Reproducibility and differences in area of foveal avascular zone measured by three different optical coherence tomographic angiography instruments. Sci Rep 7(1):9853.  https://doi.org/10.1038/s41598-017-09255-5 CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Krawitz BD, Mo S, Geyman LS, Agemy SA, Scripsema NK, Garcia PM, Chui TY, Rosen RB (2017) Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography. Vis Res.  https://doi.org/10.1016/j.visres.2016.09.019 CrossRefGoogle Scholar
  53. 53.
    Goudot MM, Sikorav A, Semoun O, Miere A, Jung C, Courbebaisse B, Srour M, Freiha JG, Souied EH (2017) Parafoveal OCT angiography features in diabetic patients without clinical diabetic retinopathy: a qualitative and quantitative analysis. J Ophthalmol 2017:8676091.  https://doi.org/10.1155/2017/8676091 CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77(3):731–758CrossRefGoogle Scholar
  55. 55.
    Geiser MH, Bonvin M, Quibel O (2004) Corneal and retinal temperatures under various ambient conditions: a model and experimental approach. Klinische Monatsblatter fur Augenheilkunde 221(5):311–314.  https://doi.org/10.1055/s-2004-812878 CrossRefGoogle Scholar
  56. 56.
    Meiri S (2011) Bergmann's Rule – what's in a name? Global Ecology and Biogeography 20(1 January 2011):203–207.  https://doi.org/10.1111/j.1466-8238.2010.00577.x CrossRefGoogle Scholar
  57. 57.
    James H, Brown AKL (1969) Bergmann's rule and climatic adaptation in Woodrats (Neotoma). Evolution 23(2):329–338.  https://doi.org/10.2307/2406795 CrossRefGoogle Scholar
  58. 58.
    Iafe NA, Phasukkijwatana N, Chen X, Sarraf D (2016) Retinal capillary density and Foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57(13):5780–5787.  https://doi.org/10.1167/iovs.16-20045 CrossRefGoogle Scholar
  59. 59.
    Wong TY, Shankar A, Klein R, Klein BE, Hubbard LD (2004) Prospective cohort study of retinal vessel diameters and risk of hypertension. BMJ (Clinical research ed) 329(7457):79.  https://doi.org/10.1136/bmj.38124.682523.55 CrossRefGoogle Scholar
  60. 60.
    Leung H, Wang JJ, Rochtchina E, Tan AG, Wong TY, Klein R, Hubbard LD, Mitchell P (2003) Relationships between age, blood pressure, and retinal vessel diameters in an older population. Invest Ophthalmol Vis Sci 44(7):2900–2904CrossRefGoogle Scholar
  61. 61.
    Li J, Yang YQ, Yang DY, Liu XX, Sun YX, Wei SF, Wang NL (2016) Reproducibility of perfusion parameters of optic disc and macula in rhesus monkeys by optical coherence tomography angiography. Chin Med J 129(9):1087–1090.  https://doi.org/10.4103/0366-6999.180532 CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Faulkner L (2003) Beyond the five-user assumption: benefits of increased sample sizes in usability testing. Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc 35(3):379–383CrossRefGoogle Scholar
  63. 63.
    Spaide RF, Curcio CA (2017) Evaluation of segmentation of the superficial and deep vascular layers of the retina by optical coherence tomography angiography instruments in Normal eyes. JAMA ophthalmology 135(3):259–262.  https://doi.org/10.1001/jamaophthalmol.2016.5327 CrossRefGoogle Scholar
  64. 64.
    Kashani AH, Chen CL, Gahm JK, Zheng F, Richter GM, Rosenfeld PJ, Shi Y, Wang RK (2017) Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res 60:66–100.  https://doi.org/10.1016/j.preteyeres.2017.07.002 CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Baran U, Choi WJ, Li Y, Wang RK (2017) Tail artifact removal in OCT angiography images of rodent cortex. J Biophotonics 10(11):1421–1429.  https://doi.org/10.1002/jbio.201600194 CrossRefGoogle Scholar
  66. 66.
    Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G (2018) Optical coherence tomography angiography. Prog Retin Eye Res 64:1–55.  https://doi.org/10.1016/j.preteyeres.2017.11.003 CrossRefGoogle Scholar
  67. 67.
    Zhang M, Hwang TS, Campbell JP, Bailey ST, Wilson DJ, Huang D, Jia Y (2016) Projection-resolved optical coherence tomographic angiography. Biomedical optics express 7(3):816–828.  https://doi.org/10.1364/boe.7.000816 CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Liu L, Gao SS, Bailey ST, Huang D, Li D, Jia Y (2015) Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography. Biomedical optics express 6(9):3564–3576.  https://doi.org/10.1364/boe.6.003564 CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Li P, Huang Z, Yang S, Liu X, Ren Q, Li P (2017) Adaptive classifier allows enhanced flow contrast in OCT angiography using a histogram-based motion threshold and 3D hessian analysis-based shape filtering. Opt Lett 42(23):4816–4819.  https://doi.org/10.1364/ol.42.004816 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Peter M. Maloca
    • 1
    • 2
    • 3
    • 4
    Email author
  • Richard F. Spaide
    • 5
  • Emanuel Ramos de Carvalho
    • 4
  • Harald P. Studer
    • 2
  • Pascal W Hasler
    • 2
    • 3
  • Hendrik P. N. Scholl
    • 1
    • 2
    • 3
    • 7
  • Tjebo F. C. Heeren
    • 8
  • Julia Schottenhamml
    • 6
  • Konstantinos Balaskas
    • 4
    • 8
  • Adnan Tufail
    • 4
  • Catherine Egan
    • 4
  • IOB study group
  1. 1.Institute of Molecular and Clinical Ophthalmology Basel (IOB)BaselSwitzerland
  2. 2.Department of Ophthalmology, OCTlabUniversity Hospital BaselBaselSwitzerland
  3. 3.Department of OphthalmologyUniversity of BaselBaselSwitzerland
  4. 4.Moorfields Eye HospitalLondonUK
  5. 5.Vitreous Retina Macula ConsultantsNew York CityUSA
  6. 6.Pattern Recognition LabUniversity Erlangen-NürnbergErlangenGermany
  7. 7.Wilmer Eye InstituteJohns Hopkins UniversityBaltimoreUSA
  8. 8.Moorfields Ophthalmic Reading CentreLondonUK

Personalised recommendations