The role of Müller cell glucocorticoid signaling in diabetic retinopathy

  • Farhad Ghaseminejad
  • Lew Kaplan
  • Anna M. Pfaller
  • Stefanie M. Hauck
  • Antje GroscheEmail author
Review Article


Diabetic retinopathy (DR) is a sight-threatening complication associated with the highly prevalent diabetes disorder. Both the microvascular damage and neurodegeneration detected in the retina caused by chronic hyperglycemia have brought special attention to Müller cells, the major macroglia of the retina that are responsible for retinal homeostasis. Given the role of glucocorticoid signaling in anti-inflammatory responses and the almost exclusive expression of glucocorticoid receptors (GRs) in retinal Müller cells, administration of corticosteroid agonists as a potential treatment option has been widely studied. Although these approaches have been moderately efficacious in treating or de-escalating DR pathomechanisms, there are various side effects and gaps of knowledge with regard to introducing exogenous glucocorticoids to the diseased retina. In this paper, we provide a review of the literature concerning the available evidence for the role of Müller cell glucocorticoid signaling in DR and we discuss previously investigated approaches in modulating this system as possible treatment options. Furthermore, we propose a novel alternative to the available choices of treatment by using gene therapy as a tool to regulate the expression of GR in retinal Müller cells. Upregulating GR expression allows for induced glucocorticoid signaling with more enduring effects compared to injection of agonists. Hence, repetitive injections would no longer be required. Lastly, side effects of glucocorticoid therapy such as glucocorticoid resistance of GR following chronic exposure to excess ligands or agonists can be avoided.


Diabetic retinopathy Glucocorticoid signaling Müller cells Gene therapy 



We thank Gabriele Jäger for her excellent technical assistance.

Funding information

The project was funded by the University of British Columbia (UBC) to F.G. by providing financial support via the “UBC-Germany Scholarship” and the German Research Foundation (DFG) to A.G. (GR 4403/2-1) and to S.M.H. (HA6014/5-1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. 1.
    Emerging Risk Factors Collaboration (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375(9733):2215–2222CrossRefGoogle Scholar
  2. 2.
    Yau JW, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3):556–564PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Lee R, Wong TY, Sabanayagam C (2015) Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vision 2(1):17PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Olivares AM, Althoff K, Chen GF et al (2017) Animal models of diabetic retinopathy. Curr Diabetes Rep 17(10):93CrossRefGoogle Scholar
  5. 5.
    Hammes HP (2018) Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia 61(1):29–38PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Tuomi T (2005) Type 1 and type 2 diabetes: what do they have in common? Diabetes. 54(suppl 2):S40–S45PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Sayin N, Kara N, Pekel G (2015) Ocular complications of diabetes mellitus. World J Diabetes 6(1):92PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Lachin JM, Genuth S, Nathan DM (2008) Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial—revisited. Diabetes 57(4):995–1001PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Zong H, Ward M, Stitt AW (2011) AGEs, RAGE, and diabetic retinopathy. Curr Diabetes Rep 11(4):244–252CrossRefGoogle Scholar
  10. 10.
    Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93(1):137–188PubMedCrossRefGoogle Scholar
  11. 11.
    Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Madsen-Bouterse SA, Kowluru RA (2008) Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord 9(4):315–327PubMedCrossRefGoogle Scholar
  13. 13.
    Thornalley PJ (2003) Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31:1343–1348PubMedCrossRefGoogle Scholar
  14. 14.
    Rabbani N, Xue M, Thornalley PJ (2016) Dicarbonyls and glyoxalase in disease mechanisms and clinical therapeutics. Glycoconj J 33(4):513–525PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Hidmark A, Fleming T, Vittas S (2014) A new paradigm to understand and treat diabetic neuropathy. Exp Clin Endocrinol Diabetes 226(04):201–207Google Scholar
  16. 16.
    Sachdeva R, Schlotterer A, Schumacher D (2018) TRPC proteins contribute to development of diabetic retinopathy and regulate glyoxalase 1 activity and methylglyoxal accumulation. Mol Metab 9:156–167PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Malaguarnera L, Zorena K (2016) Neurodegeneration and neuroinflammation in diabetic retinopathy: potential approaches to delay neuronal loss. Curr Neuropharmacol 14(8):831–839PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Reiter CE, Gardner TW (2003) Functions of insulin and insulin receptor signaling in retina: possible implications for diabetic retinopathy. Prog Retin Eye Res 22(4):545–562CrossRefGoogle Scholar
  19. 19.
    Barber AJ, Lieth E, Khin SA et al (1998) Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 102(4):783–791PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Fort PE, Losiewicz MK, Reiter CE et al (2011) Differential roles of hyperglycemia and hypoinsulinemia in diabetes induced retinal cell death: evidence for retinal insulin resistance. PLoS One 6(10):e26498PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Duh EJ, Sun JK, Stitt AW (2017) Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI insight 2(14)Google Scholar
  22. 22.
    Zhang X, Zeng H, Bao S et al (2014) Diabetic macular edema: new concepts in patho-physiology and treatment. Cell Biosci 4(1):27PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kim YW, Byzova TV (2014) Oxidative stress in angiogenesis and vascular disease. Blood 123(5):625–631PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Arjamaa O, Nikinmaa M (2006) Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors. Exp Eye Res 83(3):473–483PubMedCrossRefGoogle Scholar
  25. 25.
    Gupta N, Mansoor S, Sharma A et al (2013) Diabetic retinopathy and VEGF. Open Ophthalmol J 7:4PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Robinson R, Barathi VA, Chaurasia SS (2012) Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech 5(4):444–456PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Reichenbach A, Bringmann A (2013) New functions of Müller cells. Glia. 61(5):651–678PubMedCrossRefGoogle Scholar
  28. 28.
    Coughlin BA, Feenstra DJ, Mohr S (2017) Müller cells and diabetic retinopathy. Vis Res 139:93–100PubMedCrossRefGoogle Scholar
  29. 29.
    Reichenbach A, Wurm A, Pannicke T et al (2007) Müller cells as players in retinal degeneration and edema. Graefes Arch Clin Exp Ophthalmol 245(5):627–636PubMedCrossRefGoogle Scholar
  30. 30.
    Lieth E, Barber AJ, Xu B et al (1998) Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes. 47(5):815–820PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kowluru RA, Engerman RL, Case GL et al (2001) Retinal glutamate in diabetes and effect of antioxidants. Neurochem Int 38(5):385–390PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Li Q, Puro DG (2002) Diabetes-induced dysfunction of the glutamate transporter in retinal Muller cells. Invest Ophthalmol Vis Sci 43(9):3109–3116PubMedPubMedCentralGoogle Scholar
  33. 33.
    Eichler W, Kuhrt H, Hoffmann S et al (2000) VEGF release by retinal glia depends on both oxygen and glucose supply. Neuroreport. 11(16):3533–3537PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Pannicke T, Iandiev I, Wurm A et al (2006) Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes. 55(3):633–639PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Newman E, Reichenbach A (1996) The Müller cell: a functional element of the retina. Trends Neurosci 19(8):307–312PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Pannicke T, Iandiev I, Uckermann O et al (2004) A potassium channel-linked mechanism of glial cell swelling in the postischemic retina. Mol Cell Neurosci 26(4):493–502PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Iandiev I, Tenckhoff S, Pannicke T et al (2006) Differential regulation of Kir4. 1 and Kir2. 1 expression in the ischemic rat retina. Neurosci Lett 396(2):97–101PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Pannicke T, Uckermann O, Iandiev I et al (2005) Ocular inflammation alters swelling and membrane characteristics of rat Müller glial cells. J Neuroimmunol 161(1–2):145–154PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Krügel K, Wurm A, Pannicke T et al (2011) Involvement of oxidative stress and mitochondrial dysfunction in the osmotic swelling of retinal glial cells from diabetic rats. Exp Eye Res 92(1):87–93PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Wurm A, Iandiev I, Hollborn M et al (2008) Purinergic receptor activation inhibits osmotic glial cell swelling in the diabetic rat retina. Exp Eye Res 87(4):385–393PubMedCrossRefGoogle Scholar
  41. 41.
    Pazdro R, Burgess JR (2010) The role of vitamin E and oxidative stress in diabetes complications. Mech Ageing Dev 131(4):276–286PubMedCrossRefGoogle Scholar
  42. 42.
    Du Y, Sarthy VP, Kern TS (2004) Interaction between NO and COX pathways in retinal cells exposed to elevated glucose and retina of diabetic rats. Am J Phys Regul Integr Comp Phys 287(4):R735–R741Google Scholar
  43. 43.
    Kino T (2017) Glucocorticoid receptor. Accessed 14 Oct 2019.
  44. 44.
    Gallina D, Zelinka C, Fischer AJ (2014) Glucocorticoid receptors in the retina, Müller glia and the formation of Müller glia-derived progenitors. Development. 141(17):3340–3351PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Schaaf MJ, Cidlowski JA (2002) Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem Mol Biol 83(1–5):37–48PubMedCrossRefGoogle Scholar
  46. 46.
    Zhang X, Wang N, Schachat AP et al (2014) Glucocorticoids: structure, signaling and molecular mechanisms in the treatment of diabetic retinopathy and diabetic macular edema. Curr Mol Med 14(3):376–384PubMedCrossRefGoogle Scholar
  47. 47.
    Yeager MP, Pioli PA, Guyre PM (2011) Cortisol exerts bi-phasic regulation of inflammation in humans. Dose-Response. 9(3):332–347PubMedCrossRefGoogle Scholar
  48. 48.
    Roy MS, Roy A, Brown S (1998) Increased urinary-free cortisol outputs in diabetic patients. J Diabetes Complicat 12(1):24–27PubMedCrossRefGoogle Scholar
  49. 49.
    Chiodini I, Adda G, Scillitani A et al (2007) Cortisol secretion in patients with type 2 diabetes: relationship with chronic complications. Diabetes Care 30(1):83–88PubMedCrossRefGoogle Scholar
  50. 50.
    Erickson RL, Browne CA, Lucki I (2017) Hair corticosterone measurement in mouse models of type 1 and type 2 diabetes mellitus. Physiol Behav 178:166–171PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Vandevyver S, Dejager L, Libert C (2014) Comprehensive overview of the structure and regulation of the glucocorticoid receptor. Endocr Rev 35(4):671–693PubMedCrossRefGoogle Scholar
  52. 52.
    Gallina D, Zelinka CP, Cebulla CM et al (2015) Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity. Exp Neurol 273:114–125PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Shen W, Lee SR, Araujo J et al (2014) Effect of glucocorticoids on neuronal and vascular pathology in a transgenic model of selective Müller cell ablation. Glia. 62(7):1110–1124PubMedCrossRefGoogle Scholar
  54. 54.
    Brooks HL, Caballero S, Newell CK et al (2004) Vitreous kevels of vascular endothelial growth factor and stromal-derived factor 1 in patients with diabetic retinopathy and cystoid macular edema before and after intraocular injection of triamcinolone. Arch Ophthalmol 122(12):1801–1807PubMedCrossRefGoogle Scholar
  55. 55.
    Itakura H, Akiyama H, Hagimura N et al (2006) Triamcinolone acetonide suppresses interleukin-1 beta-mediated increase in vascular endothelial growth factor expression in cultured rat Müller cells. Graefes Arch Clin Exp Ophthalmol 244(2):226–231PubMedCrossRefGoogle Scholar
  56. 56.
    Shen W, Fruttiger M, Zhu L et al (2012) Conditional Müller cell ablation causes independent neuronal and vascular pathologies in a novel transgenic model. J Neurosci 32(45):15715–15727PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Sulaiman RS, Kadmiel M, Cidlowski JA (2018) Glucocorticoid receptor signaling in the eye. Steroids. 133:60–66PubMedCrossRefGoogle Scholar
  58. 58.
    Ramamoorthy S, Cidlowski JA (2016) Corticosteroids: mechanisms of action in health and disease. Rheum Dis Clin 42(1):15–31CrossRefGoogle Scholar
  59. 59.
    Ameyar M, Wisniewska M, Weitzman JB (2003) A role for AP-1 in apoptosis: the case for and against. Biochimie. 85(8):747–752PubMedCrossRefGoogle Scholar
  60. 60.
    Rogatsky I, Zarember KA, Yamamoto KR (2001) Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones. EMBO J 20(21):6071–6083PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Chinenov Y, Gupte R, Dobrovolna J et al (2012) Role of transcriptional coregulator GRIP1 in the anti-inflammatory actions of glucocorticoids. Proc Natl Acad Sci 109(29):11776–11781PubMedCrossRefGoogle Scholar
  62. 62.
    Nelson G, Wilde GJ, Spiller DG et al (2003) NF-κB signalling is inhibited by glucocorticoid receptor and STAT6 via distinct mechanisms. J Cell Sci 116(12):2495–2503PubMedCrossRefGoogle Scholar
  63. 63.
    Liu T, Zhang L, Joo D et al (2017) NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy 2:17023PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Caldenhoven E, Liden J, Wissink S et al (1995) Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the anti-inflammatory action of glucocorticoids. Mol Endocrinol 9(4):401–412PubMedGoogle Scholar
  65. 65.
    Morikawa M, Derynck R, Miyazono K (2016) TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol 8(5):a021873PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Inman GJ (2005) Linking Smads and transcriptional activation. Biochem J 386(1):E1PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Yafai Y, Iandiev I, Lange J et al (2014) Müller glial cells inhibit proliferation of retinal endothelial cells via TGF-β2 and Smad signaling. Glia. 62(9):1476–1485PubMedCrossRefGoogle Scholar
  68. 68.
    Gerhardinger C, Dagher Z, Sebastiani P et al (2009) The transforming growth factor-β pathway is a common target of drugs that prevent experimental diabetic retinopathy. Diabetes. 58(7):1659–1667PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Song CZ, Tian X, Gelehrter TD (1999) Glucocorticoid receptor inhibits transforming growth factor-β signaling by directly targeting the transcriptional activation function of Smad3. Proc Natl Acad Sci 96(21):11776–11781PubMedCrossRefGoogle Scholar
  70. 70.
    Hillmer EJ, Zhang H, Li HS et al (2016) STAT3 signaling in immunity. Cytokine Growth Factor Rev 31:1–15PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Yun JH, Park SW, Kim KJ et al (2017) Endothelial STAT3 activation increases vascular leakage through downregulating tight junction proteins: implications for diabetic retinopathy. J Cell Physiol 232(5):1123–1134PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Langlais D, Couture C, Balsalobre A et al (2012) The Stat3/GR interaction code: predictive value of direct/indirect DNA recruitment for transcription outcome. Mol Cell 47(1):38–49PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 161(5):1202–1214PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Peng YR, Shekhar K, Yan W et al (2019) Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell. 176(5):1222–1237PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Mages K, Grassmann F, Jägle H et al (2019) The agonistic TSPO ligand XBD173 attenuates the glial response thereby protecting inner retinal neurons in a murine model of retinal ischemia. J Neuroinflammation 16(1):43PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Das A, Stroud S, Mehta A et al (2015) New treatments for diabetic retinopathy. Diabetes Obes Metab 17(3):219–230PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Fong DS, Girach A, Boney A (2007) Visual side effects of successful scatter laser photocoagulation surgery for proliferative diabetic retinopathy: a literature review. Retina. 27(7):816–824PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Dugel PU, Bandello F, Loewenstein A (2015) Dexamethasone intravitreal implant in the treatment of diabetic macular edema. Clin Ophthalmol (Auckland, NZ) 9:1321CrossRefGoogle Scholar
  79. 79.
    Quaggin SE (2012) Turning a blind eye to anti-VEGF toxicities. J Clin Invest 122(11):3849–3851PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Van Wijngaarden P, Coster DJ, Williams KA (2005) Inhibitors of ocular neovascularization: promises and potential problems. JAMA. 293(12):1509–1513PubMedCrossRefGoogle Scholar
  81. 81.
    Bainbridge JW, Smith AJ, Barker SS et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358(21):2231–2239PubMedCrossRefGoogle Scholar
  82. 82.
    Le Meur G, Lebranchu P, Billaud F et al (2018) Safety and long-term efficacy of AAV4 gene therapy in patients with RPE65 Leber congenital amaurosis. Mol Ther 26(1):256–268PubMedCrossRefGoogle Scholar
  83. 83.
    Wang JH, Ling D, Tu L et al (2017) Gene therapy for diabetic retinopathy: are we ready to make the leap from bench to bedside? Pharmacol Ther 173:1–18PubMedCrossRefGoogle Scholar
  84. 84.
    Ideno J, Mizukami H, Kakehashi A et al (2007) Prevention of diabetic retinopathy by intraocular soluble flt-1 gene transfer in a spontaneously diabetic rat model. Int J Mol Med 19(1):75–79PubMedGoogle Scholar
  85. 85.
    Pechan P, Rubin H, Lukason M et al (2009) Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization. Gene Ther 16(1):10PubMedCrossRefGoogle Scholar
  86. 86.
    Jiang J, Xia XB, Xu HZ et al (2009) Inhibition of retinal neovascularization by gene transfer of small interfering RNA targeting HIF-1α and VEGF. J Cell Physiol 218(1):66–74PubMedCrossRefGoogle Scholar
  87. 87.
    Haurigot V, Villacampa P, Ribera A et al (2012) Long-term retinal PEDF overexpression prevents neovascularization in a murine adult model of retinopathy. PLoS One 7(7):e41511PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Shyong MP, Lee FL, Kuo PC et al (2007) Reduction of experimental diabetic vascular leakage by delivery of angiostatin with a recombinant adeno-associated virus vector. Mol Vis 13:133PubMedPubMedCentralGoogle Scholar
  89. 89.
    Gong Y, Chang ZP, Ren RT et al (2012) Protective effects of adeno-associated virus mediated brain-derived neurotrophic factor expression on retinal ganglion cells in diabetic rats. Cell Mol Neurobiol 32(3):467–475PubMedCrossRefGoogle Scholar
  90. 90.
    Ramírez M, Wu Z, Moreno-Carranza B et al (2011) Vasoinhibin gene transfer by adenoassociated virus type 2 protects against VEGF-and diabetes-induced retinal vasopermeability. Invest Ophthalmol Vis Sci 52(12):8944–8950PubMedCrossRefGoogle Scholar
  91. 91.
    Goswami R, Subramanian G, Silayeva L et al (2019) Gene therapy leaves a vicious cycle. Front Oncol 9:297PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physiological GenomicsLudwig-Maximilians-Universität MünchenMartinsriedGermany
  2. 2.Research Unit Protein Science, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)NeuherbergGermany

Personalised recommendations