Advertisement

Association of retinal biomarkers and choroidal vascularity index on optical coherence tomography using binarization method in retinitis pigmentosa

  • Ebru N. CetinEmail author
  • Osman Parca
  • Hasan Samed Akkaya
  • Gökhan Pekel
Retinal Disorders

Abstract

Purpose

To investigate the association of retinal biomarkers with the choroidal parameters in retinitis pigmentosa (RP).

Methods

This prospective study included 69 eyes of 36 patients with RP. Choroidal vascularity index (CVI) was defined as the ratio of luminal area to stromal area after binarization on EDI–OCT images. Choroidal thickness (CT); peripapillary CT, the disruptions of the ellipsoid zone (EZ) and external limiting membrane (ELM); and the existence of disorganization of the retinal inner layers (DRIL) and epiretinal membrane (ERM) in central 1000 μm were noted.

Results

Having DRIL and the disruption of EZ and ELM was significantly associated with higher CVI (p < 0.001, p = 0.001, and p = 0.002 respectively) and lower peripapillary CT in temporal sector (p = 0.031, p = 0.012, and p = 0.043 respectively). Having ERM, the disruption of EZ and ELM was significantly associated with lower visual acuity (VA) (p = 0.044, p < 0.001, and p < 0.001 respectively). The eyes with ERM had significantly lower peripapillary retinal nerve fiber thickness (pRNFLT) (p = 0.040). The mean peripapillary CT significantly and positively correlated with the temporal, nasal, superonasal, and the mean pRNFLT (r = 0.258, p = 0.036, r = 0.252, p = 0.041, r = 0.260, p = 0.035, r = 0.280, p = 0.023 respectively). VA did not significantly correlate with CT, peripapillary CT, or CVI (p > 0.05).

Conclusion

The disruption outer retinal segment integrity was significantly associated with higher CVI and lower peripapillary CT in temporal segment. ERM and disruption of ELM and EZ were associated with worse VA. VA did not significantly correlate with CT, peripapillary CT, or CVI.

Keywords

Binarization method Choroidal thickness Choroidal vascularity index DRIL Ellipsoid zone Epiretinal membrane External limiting membrane Peripapillary choroidal thickness Retinal nerve fiber layer Retinitis pigmentosa 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368(9549):1795–1809CrossRefGoogle Scholar
  2. 2.
    Arepalli S, Traboulsi EI, Ehlers JP (2018) Ellipsoid zone mapping and outer retinal assessment in Stargardt disease. Retina 38(7):1427–1431CrossRefGoogle Scholar
  3. 3.
    Campos A, Campos EJ, do Carmo A, Caramelo F, Martins J, Sousa JP, Ambrósio AF, Silva R (2018) Evaluation of markers of outcome in real-world treatment of diabetic macular edema. Eye Vis (Lond) 5:27CrossRefGoogle Scholar
  4. 4.
    Eliwa TF, Hussein MA, Zaki MA, Raslan OA (2018) Outer retinal layer thickness as good visual predictor in patients with diabetic macular edema. Retina 38(4):805–811CrossRefGoogle Scholar
  5. 5.
    Takahashi VKL, Takiuti JT, Carvalho-Jr JRL, Xu CL, Duong JK, Mahajan VB, Tsang SH (2019) Fundus autofluorescence and ellipsoid zone (EZ) line width can be an outcome measurement in RHO-associated autosomal dominant retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 257(4):725–731CrossRefGoogle Scholar
  6. 6.
    Tang F, Qin X, Lu J, Song P, Li M, Ma X (2019) Optical coherence tomography predictors of short-term visual acuity in eyes with macular edema secondary to retinal vein occlusion treated with intravitreal conbercept. Retina.  https://doi.org/10.1097/IAE.0000000000002444
  7. 7.
    Sousa K, Fernandes T, Gentil R, Mendonça L, Falcão M (2018) Outer retinal layers as predictors of visual acuity in retinitis pigmentosa: a cross-sectional study. Graefes Arch Clin Exp Ophthalmol 257(2):265–271CrossRefGoogle Scholar
  8. 8.
    Saxena S, Srivastav K, Cheung CM, Ng JY, Lai TY (2014) Photoreceptor inner segment ellipsoid band integrity on spectral domain optical coherence tomography. Clin Ophthalmol 8:2507–2522PubMedPubMedCentralGoogle Scholar
  9. 9.
    Kawano H, Sonoda S, Saito S, Terasaki H, Sakamoto T (2017) Choroidal structure altered by degeneration of retina in eyes with retinitis pigmentosa. Retina 37(11):2175–2182CrossRefGoogle Scholar
  10. 10.
    Murakami Y, Funatsu J, Nakatake S, Fujiwara K, Tachibana T, Koyanagi Y, Hisatomi T, Yoshida S, Sonoda S, Sakamoto T, Sonoda KH, Ikeda Y (2018) Relations among foveal blood flow, retinal-choroidal structure, and visual function in retinitis pigmentosa. Invest Ophthalmol Vis Sci 59(2):1134–1143CrossRefGoogle Scholar
  11. 11.
    Egawa M, Mitamura Y, Niki M, Sano H, Miura G, Chiba A, Yamamoto S, Sonoda S, Sakamoto T (2018) Correlations between choroidal structures and visual functions in eyes with retinitis pigmentosa. Retina.  https://doi.org/10.1097/IAE.0000000000002285
  12. 12.
    Sun JK, Lin MM, Lammer J, Prager S, Sarangi R, Silva PS, Aiello LP (2014) Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol 132(11):1309–1316CrossRefGoogle Scholar
  13. 13.
    Branchini LA, Adhi M, Regatieri CV, Nandakumar N, Liu JJ, Laver N, Fujimoto JG, Duker JS (2013) Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography. Ophthalmology 120(9):1901–1908CrossRefGoogle Scholar
  14. 14.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybernetics 9:62–66 (https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4310076)CrossRefGoogle Scholar
  15. 15.
    Wang W, Zhou M, Huang W, Chen S, Ding X, Zhang X (2013) Does acute primary angle-closure cause an increased choroidal thickness? Invest Ophthalmol Vis Sci 54:3538–3545CrossRefGoogle Scholar
  16. 16.
    Iftikhar M, Usmani B, Sanyal A, Kherani S, Sodhi S, Bagheri S, Schönbach EM, Junaid N, Scholl HPN, Shah SMA (2019) Progression of retinitis pigmentosa on multimodal imaging: the PREP-1 study. Clin Exp Ophthalmol 47(5):605–613PubMedGoogle Scholar
  17. 17.
    Liu G, Li H, Liu X, Xu D, Wang F (2016) Structural analysis of retinal photoreceptor ellipsoid zone and postreceptor retinal layer associated with visual acuity in patients with retinitis pigmentosa by ganglion cell analysis combined with OCT imaging. Medicine (Baltimore) 95(52):e5785CrossRefGoogle Scholar
  18. 18.
    Son G, Lee S, Kim YJ, Lee JY, Kim JG, Yoon YH (2019) Correlation between visual function and structural characteristics of the macula in advanced retinitis pigmentosa. Ophthalmologica 242(1):22–30CrossRefGoogle Scholar
  19. 19.
    Sodi A, Lenzetti C, Murro V, Caporossi O, Mucciolo DP, Bacherini D, Cipollini F, Passerini I, Virgili G, Rizzo S (2018) EDI-OCT evaluation of choroidal thickness in retinitis pigmentosa. Eur J Ophthalmol 28(1):52–57CrossRefGoogle Scholar
  20. 20.
    Dhoot DS, Huo S, Yuan A, Xu D, Srivistava S, Ehlers JP, Traboulsi E, Kaiser PK (2013) Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography. Br J Ophthalmol 97(1):66–69CrossRefGoogle Scholar
  21. 21.
    Ayton LN, Guymer RH, Luu CD (2013) Choroidal thickness profiles in retinitis pigmentosa. Clin Exp Ophthalmol 41(4):396–403CrossRefGoogle Scholar
  22. 22.
    Tan R, Agrawal R, Taduru S, Gupta A, Vupparaboina K, Chhablani J (2018) Choroidal vascularity index in retinitis pigmentosa: an OCT study. Ophthalmic Surg Lasers Imaging Retina 49(3):191–197CrossRefGoogle Scholar
  23. 23.
    Chhablani J, Jonnadula GB, Srinivasa Rao P, Venkata A, Jalali S (2016) Choroidal thickness profile in retinitis pigmentosa - correlation with outer retinal structures. Saudi J Ophthalmol 30(1):9–13CrossRefGoogle Scholar
  24. 24.
    Campos A, Campos EJ, Martins J, Ambrósio AF, Silva R (2017) Viewing the choroid: where we stand, challenges and contradictions in diabetic retinopathy and diabetic macular oedema. Acta Ophthalmol 95(5):446–459CrossRefGoogle Scholar
  25. 25.
    Kim M, Ha MJ, Choi SY, Park YH (2018) Choroidal vascularity index in type-2 diabetes analyzed by swept-source optical coherence tomography. Sci Rep 8(1):70CrossRefGoogle Scholar
  26. 26.
    Wei X, Mishra C, Kannan NB, Holder GE, Khandelwal N, Kim R, Agrawal R (2019) Choroidal structural analysis and vascularity index in retinal dystrophies. Acta Ophthalmol 97(1):e116–e121CrossRefGoogle Scholar
  27. 27.
    Lee JH, Kim JY, Jung BJ, Lee WK (2019) Focal disruptions in ellipsoid zone and interdigitation zone on spectral-domain optical coherence tomography in pachychoroid pigment epitheliopathy. Retina 39(8):1562–1570CrossRefGoogle Scholar
  28. 28.
    Lin Z, Huang S, Huang P, Guo L, Shen X, Zhong Y (2017) The diagnostic use of choroidal thickness analysis and its correlation with visual field indices in glaucoma using spectral domain optical coherence tomography. PLoS One 12(12):e0189376CrossRefGoogle Scholar
  29. 29.
    Yang H, Luo H, Gardiner SK, Hardin C, Sharpe GP, Caprioli J, Demirel S, Girkin CA, Liebmann JM, Mardin CY, Quigley HA, Scheuerle AF, Fortune B, Chauhan BC, Burgoyne CF (2019) Factors influencing optical coherence tomography peripapillary choroidal thickness: a multicenter study. Invest Ophthalmol Vis Sci 60(2):795–806CrossRefGoogle Scholar
  30. 30.
    Fujiwara K, Ikeda Y, Murakami Y, Nakatake S, Tachibana T, Yoshida N, Nakao S, Hisatomi T, Yoshida S, Yoshitomi T, Sonoda KH, Ishibashi T (2016) Association between aqueous flare and epiretinal membrane in retinitis pigmentosa. Invest Ophthalmol Vis Sci 57(10):4282–4286CrossRefGoogle Scholar
  31. 31.
    Fragiotta S, Rossi T, Carnevale C, Cutini A, Tricarico S, Casillo L, Scuderi G, Vingolo EM (2019) Vitreo-macular interface disorders in retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 257(10):2137–2146CrossRefGoogle Scholar
  32. 32.
    Liew G, Strong S, Bradley P, Severn P, Moore AT, Webster AR, Mitchell P, Kifley A, Michaelides M (2019) Prevalence of cystoid macular oedema, epiretinal membrane and cataract in retinitis pigmentosa. Br J Ophthalmol 103(8):1163–1166CrossRefGoogle Scholar
  33. 33.
    Lee YH, Bae HW, Seo SJ, Lee SY, Beon SH, Kang S, Kim CY (2016) Influence of epiretinal membrane on the measurement of peripapillary retinal nerve fibre layer thickness using spectral-domain coherence tomography. Br J Ophthalmol 100(8):1035–1040CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of OphthalmologyPamukkale UniversityDenizliTurkey

Personalised recommendations