Long-term endothelial cell loss with the iris-claw intraocular phakic lenses (Artisan®)

  • Virgilio Galvis
  • John F. Villamil
  • María Fernanda Acuña
  • Paul A. Camacho
  • Jesús Merayo-Lloves
  • Alejandro TelloEmail author
  • Sandra Lizeth Zambrano
  • Juan José Rey
  • Juan Vicente Espinoza
  • Angélica María Prada
Refractive Surgery



To evaluate the endothelial cell loss in patients with iris-claw phakic lenses (Artisan®) in a long-term follow-up.


We analyzed the medical records of patients who had undergone iris-claw phakic lens implantation and who had at least 5 years of follow-up.


We included 67 eyes with myopic errors (follow-up 9.6 ± 3.0 years) and 10 eyes with mixed astigmatism or hyperopic errors (follow-up 8.8 ± 2.5 years). The mean total endothelial density loss at the last follow-up visit was 18.5% ± 17.0% and 10.5% ± 12.3%, respectively. 29.9% of the eyes in the myopic group and 20% in the hyperopic group lost more than 25% of the preoperative endothelial cell density. During the postoperative follow-up period, 60.8% of the eyes in the myopic group and 40% of the eyes in the hyperopic group lost a higher percentage than the expected physiological loss. Two eyes in the myopic group (3.0%) had a final cell density of less than 1200 cells/mm2. None of the variables studied had a statistically significant association with the percentage of annual endothelial loss in the postoperative period. Three phakic lenses were explanted: two by cataract and one by cataract and severe decrease of the endothelial density (862 cells/mm2).


There is a significant endothelial cell loss in a low percentage of the eyes with Artisan® lenses in the long term, and it can decrease to critical levels. Periodic endothelial density evaluations are required for these patients. The selection criteria of surgical candidates could be reevaluated.


Phakic intraocular lenses Corneal endothelial cell loss Corneal edema Refractive surgery Corneal endothelium Cornea 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of Fundacion Oftalmológica de Santander FOSCAL and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Alió JL, Soria F, Abbouda A, Peña-García P (2015) Laser in situ keratomileusis for -6.00 to -18.00 diopters of myopia and up to -5.00 diopters of astigmatism: 15-year follow-up. J Cataract Refract Surg 41:33–40. CrossRefPubMedGoogle Scholar
  2. 2.
    Vega-Estrada A, Alió JL, Arba Mosquera S, Moreno LJ (2012) Corneal higher order aberrations after LASIK for high myopia with a fast repetition rate excimer laser, optimized ablation profile, and femtosecond laser-assisted flap. J Refract Surg 28:689–696. CrossRefPubMedGoogle Scholar
  3. 3.
    Santhiago MR (2016) Percent tissue altered and corneal ectasia. Curr Opin Ophthalmol 27:311–315. CrossRefPubMedGoogle Scholar
  4. 4.
    Pineda R 2nd, Chauhan T (2016) Phakic intraocular lenses and their special indications. J Ophthalmic Vis Res 11:422–428CrossRefGoogle Scholar
  5. 5.
    Alió JL, Toffaha BT (2013) Refractive surgery with phakic intraocular lenses: an update. Int Ophthalmol Clin 53:91–110. CrossRefPubMedGoogle Scholar
  6. 6.
    Kohnen T (2018) Phakic intraocular lenses: where are we now? J Cataract Refract Surg 44:121–123. CrossRefPubMedGoogle Scholar
  7. 7.
    Kohnen T, Kook D, Morral M, Güell JL (2010) Phakic intraocular lenses: part 2: results and complications. J Cataract Refract Surg 36:2168–2194. CrossRefPubMedGoogle Scholar
  8. 8.
    Pechméja J, Guinguet J, Colin J, Binder PS (2012) Severe endothelial cell loss with anterior chamber phakic intraocular lenses. J Cataract Refract Surg 38:1288–1292. CrossRefPubMedGoogle Scholar
  9. 9.
    Galvis V, Tello A, Carreño NI, Berrospi RD, Niño CA, Cuadros MO (2017) Endothelial loss with AcrySof® Cachet® angle-supported phakic lens. Arch Soc Esp Oftalmol 92:e53–e54. CrossRefPubMedGoogle Scholar
  10. 10.
    Alió JL, Abbouda A, Peña-Garcia P, Huseynli S (2013) Follow-up study of more than 15 years of an angle-supported phakic intraocular lens model (ZB5M) for high myopia outcomes and complications. JAMA Ophthalmol 131:1541–1546. CrossRefPubMedGoogle Scholar
  11. 11.
    Alio JL, Toffaha BT, Peña-Garcia P, Sádaba LM, Barraquer RI (2015) Phakic intraocular lens explantation: causes in 240 cases. J Refract Surg 31:30–35. CrossRefPubMedGoogle Scholar
  12. 12.
    Sayman Muslubas IB, Kandemir B, Aydin Oral AY, Kugu S, Dastan M (2014) Long-term vision-threatening complications of phakic intraocular lens implantation for high myopia. Int J Ophthalmol 7:376–380. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fechner PU, Worst JGF (1989) A new concave intraocular lens for the correction of myopia. Eur J Implant Refract Surg 1:41–43. CrossRefGoogle Scholar
  14. 14.
    Worst JGF, Van der Veen G, Los LI (1990) Refractive surgery for high myopia. The Worst-Fechner biconcave iris claw lens. Doc Ophthalmol 75:335–341CrossRefGoogle Scholar
  15. 15.
    Fechner PU, Haubitz I, Wichmann W, Wulff K (1999) Worst-Fechner biconcave minus power phakic iris-claw lens. J Refract Surg 15:93–105PubMedGoogle Scholar
  16. 16.
    Landesz M, Worst JG, van Rij G (2000) Long-term results of correction of high myopia with an iris claw phakic intraocular lens. J Refract Surg 16:310–316. CrossRefPubMedGoogle Scholar
  17. 17.
    Güell JL, Morral M, Gris O, Gaytan J, Sisquella M, Manero F (2008) Five-year follow-up of 399 phakic Artisan-Verisyse implantation for myopia, hyperopia, and/or astigmatism. Ophthalmology 115:1002–1012. CrossRefPubMedGoogle Scholar
  18. 18.
    Benedetti S, Casamenti V, Benedetti M (2007) Long-term endothelial changes in phakic eyes after Artisan intraocular lens implantation to correct myopia. Five-year study. J Cataract Refract Surg 33:784–790. CrossRefPubMedGoogle Scholar
  19. 19.
    Menezo JL, Peris-Martínez C, Cisneros AL, Martínez-Costa R (2004) Phakic intraocular lenses to correct high myopia: Adatomed, Staar, and Artisan. J Cataract Refract Surg 30:33–44. CrossRefPubMedGoogle Scholar
  20. 20.
    Silva RA, Jain A, Manche EE (2008) Prospective long-term evaluation of the efficacy, safety, and stability of the phakic intraocular lens for high myopia. Arch Ophthalmol 126:775–781. CrossRefPubMedGoogle Scholar
  21. 21.
    Tahzib NG, Nuijts RM, Wu WY, Budo CJ (2007) Long-term study of Artisan phakic intraocular lens implantation for the correction of moderate to high myopia. Ten-Year Follow-up Results. Ophthalmology 114:1133–1142. CrossRefPubMedGoogle Scholar
  22. 22.
    Stulting RD, John ME, Maloney RK, Assil KK, Arrowsmith PN, Thompson VM (2008) Three-year results of Artisan/Verisyse phakic intraocular lens implantation. Results of the United States Food and Drug Administration Clinical Trial. Ophthalmology 115:464–472. CrossRefPubMedGoogle Scholar
  23. 23.
    Jonker SMR, Berendschot TTJM, Ronden AE, Saelens IEY, Bauer NJC, Nuijts RMMA (2018) Long-term endothelial cell loss in patients with Artisan myopia and Artisan toric phakic intraocular lenses: 5- and 10-year results. Ophthalmology 125:486–494. CrossRefPubMedGoogle Scholar
  24. 24.
    Chebli S, Rabilloud M, Burillon C, Kocaba V (2018) Corneal endothelial tolerance after iris-fixated phakic intraocular lens implantation: a model to predict endothelial cell survival. Cornea 37:591–595. CrossRefPubMedGoogle Scholar
  25. 25.
    Sanders DR (2008) Anterior subcapsular opacities and cataracts 5 years after surgery in the Visian Implantable Collamer lens FDA trial. J Refract Surg 24:566–570. CrossRefPubMedGoogle Scholar
  26. 26.
    Packer M (2016) Meta-analysis and review: effectiveness, safety, and central port design of the intraocular collamer lens. Clin Ophthalmol 10:1059–1077. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Moya T, Javaloy J, Montés-Micó R, Beltrán J, Muñoz G, Montalbán R (2015) Implantable Collamer lens for myopia: assessment 12 years after implantation. J Refract Surg 31:548–556. CrossRefPubMedGoogle Scholar
  28. 28.
    Moya T, Javaloy J, Montés-Micó R, Beltrán J, Muñoz G, Montalbán R (2015) Reply: to. J Refract Surg 31:854-855CrossRefGoogle Scholar
  29. 29.
    Alfonso JF, Fernández-Vega-Cueto L, Alfonso-Bartolozzi B, Montés-Micó R, Fernández-Vega L (2019) Five-year follow-up of correction of myopia: posterior chamber phakic intraocular lens with a central port design. J Refract Surg 35:169–176. CrossRefPubMedGoogle Scholar
  30. 30.
    Bourne WM, Nelson LR, Hodge DO (1997) Central corneal endothelial cell changes over a ten-year period. Invest Ophthalmol Vis Sci 38:779–782PubMedGoogle Scholar
  31. 31.
    Gierek-Ciaciura S, Gierek-Lapinska A, Ochalik K, Mrukwa-Kominek E (2007) Correction of high myopia with different phakic anterior chamber intraocular lenses: ICARE angle-supported lens and Verisyse iris-claw lens. Graefes Arch Clin Exp Ophthalmol 245:1–7. CrossRefPubMedGoogle Scholar
  32. 32.
    Budo C, Hessloehl JC, Izak M, Luyten GP, Menezo JL, Sener BA, Tassignon MJ, Termote H, Worst JG (2000) Multicenter study of the Artisan phakic intraocular lens. J Cataract Refract Surg 26:1163–1171CrossRefGoogle Scholar
  33. 33.
    Landesz M, van Rij G, Luyten G (2001) Iris-claw phakic intraocular lens for high myopia. J Refract Surg 17:634–640PubMedGoogle Scholar
  34. 34.
    Lifshitz T, Levy J, Aizenman I, Klemperer I, Levinger S (2004) Artisan phakic intraocular lens for correcting high myopia. Int Ophthalmol 25:233–238. CrossRefPubMedGoogle Scholar
  35. 35.
    Maloney RK, Nguyen LH, John ME (2002) Artisan phakic intraocular lens for myopia short-term results of a prospective, multicenter study. Ophthalmology 109:1631–1641CrossRefGoogle Scholar
  36. 36.
    Malecaze FJ, Hulin H, Bierer P, Fournié P, Grandjean H, Thalamas C, Guell JL (2002) A randomized paired eye comparison of two techniques for treating moderately high myopia: LASIK and artisan phakic lens. Ophthalmology 109:1622–1630CrossRefGoogle Scholar
  37. 37.
    Benedetti S, Casamenti V, Marcaccio L, Brogioni C, Assetto V (2005) Correction of myopia of 7 to 24 diopters with the Artisan phakic in traocular lens: two-year follow-up. J Refract Surg 21:116–126PubMedGoogle Scholar
  38. 38.
    Senthil S, Reddy KP (2006) A retrospective analysis of the first Indian experience on Artisan phakic intraocular lens. Indian J Ophthalmol 54:251–255. CrossRefPubMedGoogle Scholar
  39. 39.
    Hassaballa MA, Macky TA (2011) Phakic intraocular lenses outcomes and complications: Artisan vs Visian ICL. Eye (Lond) 25:1365–1370CrossRefGoogle Scholar
  40. 40.
    Moshirfar M, Imbornoni LM, Ostler EM, Muthappan V (2014) Incidence rate and occurrence of visually significant cataract formation and corneal decompensation after implantation of Verisyse/Artisan phakic intraocular lens. Clin Ophthalmol 8:711–716. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Van Eijden R, de Vries NE, Cruysberg LP, Webers CA, Berenschot T, Nuijts RM (2009) Case of late-onset corneal decompensation after iris-claw phakic intraocular lens implantation. J Cataract Refract Surg 35:774–777. CrossRefPubMedGoogle Scholar
  42. 42.
    Kim M, Kim JK, Lee HK (2008) Corneal endothelial decompensation after iris-claw phakic intraocular lens implantation. J Cataract Refract Surg 34:517–519. CrossRefPubMedGoogle Scholar
  43. 43.
    Sikder S, Patel V, Holz HA, Mifflin MD, Davis S, Moshirfar M (2011) Management of corneal endothelial decompensation caused by iris-claw phakic intraocular lenses with descemet stripping automated endothelial keratoplasty. Cornea 30:1045–1047. CrossRefPubMedGoogle Scholar
  44. 44.
    Saxena R, Boekhoorn SS, Mulder PGH, Noordxij B, van Rij G, Luyten GP (2008) Long-term follow-up of endothelial cell change after Artisan phakic intraocular lens implantation. Ophthalmology 115:608–613. CrossRefPubMedGoogle Scholar
  45. 45.
    Bouheraoua N, Bonnet C, Labbé A, Sandali O, Lecuen N, Ameline B, Borderie V, Laroche L (2015) Iris-fixated phakic intraocular lens implantation to correct myopia and a predictive model of endothelial cell loss. J Cataract Refract Surg 41:2450–2457. CrossRefPubMedGoogle Scholar
  46. 46.
    Shajari M, Scheffel M, Koss MJ, Kohnen T (2016) Dependency of endothelial cell loss on anterior chamber depth within first 4 years after implantation of iris-supported phakic intraocular lenses to treat high myopia. J Cataract Refract Surg 42:1562–1569. CrossRefPubMedGoogle Scholar
  47. 47.
    Menezo JL, Cisneros AL, Rodriguez-Salvador V (1998) Endothelial study of iris-claw phakic lens: four year follow-up. J Cataract Refract Surg 24:1039–1049CrossRefGoogle Scholar
  48. 48.
    Doors M, Berendschot TT, Webers CA, Nuijts RM (2010) Model to predict endothelial cell loss after iris-claw phakic intraocular lens implantation. Invest Ophthalmol Vis Sci 51:811–815. CrossRefPubMedGoogle Scholar
  49. 49.
    MacRae S, Holladay JT, Hilmantel G, Calogero D, Masket S, Stark W, Glasser A, Rorer E, Tarver ME, Nguyen T, Eydelman M (2017) Special report: American Academy of Ophthalmology Task Force Recommendations for specular microscopy for phakic intraocular lenses. Ophthalmology 124:141–142. CrossRefPubMedGoogle Scholar
  50. 50.
    Bernard P, Fournier M (2006) Definitive stop of marketing, product recall and follow-up of implanted patients. Presbyopia intraocular lenses NEWLIFE/VIVARTE PRESBYOPIC. Agence Française de Sécurité Sanitaire des Produits de Santé (AFSSAPS), V8. 21/12/06. Available in;
  51. 51.
    Titiyal JS, Sharma N, Mannan R, Pruthi A, Vajpayee RB (2012) Iris-fixated intraocular lens implantation to correct moderate to high myopia in Asian-Indian eyes: five-year results. J Cataract Refract Surg 38:1446–1452. CrossRefPubMedGoogle Scholar
  52. 52.
    Yuan X, Ping HZ, Hong WC, Yin D, Ting Z (2012) Five-year follow-up after anterior iris-claw intraocular lens implantation in phakic eyes to correct high myopia. Eye (Lond) 26:321–326. CrossRefGoogle Scholar
  53. 53.
    Wilson SE (1989) The correction of myopia by lens implantation into phakic eyes. Am J Ophthalmol 108:465–466CrossRefGoogle Scholar
  54. 54.
    Fechner PU (1990) Intraocular lenses for the correction of myopia in phakic eyes: short-term success and long-term caution. Refract Corneal Surg 6:242–244PubMedGoogle Scholar
  55. 55.
    Fechner PU, van der Heijde GL, Worst JG (1989) The correction of myopia by lens implantation into phakic eyes. Am J Ophthalmol 107:659–663CrossRefGoogle Scholar
  56. 56.
    Fechner PU, Strobel J, Wichmann W (1991) Correction of myopia by implantation of a concave Worst-iris claw lens into phakic eyes. Refract Corneal Surg 7:286–298PubMedGoogle Scholar
  57. 57.
    Fechner PU (2010) Late loss of corneal endothelial density with refractive iris-claw IOLs. J Cataract Refract Surg 36:352–353. CrossRefPubMedGoogle Scholar
  58. 58.
    Fechner PU (2010) The status of follow-up treatment for patients with refractive anterior chamber IOLs in phakic eyes. Klin Monatsbl Augenheilkd 227:228. CrossRefPubMedGoogle Scholar
  59. 59.
    Budo C (2010) Another view of iris-claw IOL implantation. J Cataract Refract Surg 36:1801–1802; author reply 1802. CrossRefPubMedGoogle Scholar
  60. 60.
    Culbertson WW, Tseng SC (1994) Corneal disorders in floppy eyelid syndrome. Cornea 13:33–42CrossRefGoogle Scholar
  61. 61.
    Galvis V, Tello A, Delgado J, Gutiérrez AJ, Rodríguez L, Chaparro T (2011) Reproducibility of the results of the endothelial analysis with the Topcon sp-3000p® non-contact specular microscope. Rev Sociedad Colombiana de Oftalmología 44:253–260Google Scholar
  62. 62.
    Liang GL, Wu J, Shi JT, Liu J, He FY, Xu W (2014) Implantable collamer lens versus iris-fixed phakic intraocular lens implantation to correct myopia: a meta-analysis. PLoS One 9:e104649. CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Módis L Jr, Langenbucher A, Seitz B (2002) Corneal endothelial cell density and pachymetry measured by contact and noncontact specular microscopy. J Cataract Refract Surg 28:1763–1769CrossRefGoogle Scholar
  64. 64.
    Galvis V, Tello A, Gutierrez ÁJ (2013) Human corneal endothelium regeneration: effect of ROCK inhibitor. Invest Ophthalmol Vis Sci 54:4971–4973. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro Oftalmológico Virgilio GalvisFOSCAL InternacionalFloridablancaColombia
  2. 2.Ophthalmology DepartmentFundación Oftalmológica de Santander FOSCALFloridablancaColombia
  3. 3.Faculty of Health SciencesUniversidad Autónoma de BucaramangaBucaramangaColombia
  4. 4.Faculty of Health SciencesUniversidad Industrial de SantanderBucaramangaColombia
  5. 5.Instituto Universitario Fernández-VegaOviedoSpain
  6. 6.Ophthalmology DepartmentUniversidad de OviedoOviedoSpain

Personalised recommendations