Impact of integrated multiple image averaging on OCT angiography image quality and quantitative parameters

  • Jost L. LauermannEmail author
  • Y. Xu
  • P. Heiduschka
  • M. Treder
  • F. Alten
  • N. Eter
  • M. Alnawaiseh
Retinal Disorders



Multiple image averaging (MIA) is a new approach to improve OCT angiography (OCTA) imaging. The aim of this work was to analyze the impact of MIA on image quality and quantitative OCTA parameters.


Twenty eyes from 20 healthy volunteers (55.65 ± 14.8 years) were prospectively enrolled. Imaging was performed using two commercially available OCTA devices (Canon OCT HS-100, Optovue AngioVue) using a uniform imaging protocol. Each participant had two single scans of the macula (3 × 3mm, Canon and Optovue) as well as five continuous single scan imaging procedures (3 × 3mm each) using the Canon device. Three out of five of these images with highest quality were manually chosen and then automatically processed by the Canon device using MIA.

The superficial retinal plexus of the single scans and of MIA images was analyzed with regard to the device’ own image quality scores (IQS), peak signal-to-noise ratio (PSNR), the size of the foveolar avascular zone (FAZ), and vessel density (VD). Image acquisition times were recorded. Parameters were compared between the devices and the different imaging protocols.


Average acquisition time was significantly higher for the MIA compared with the single measurements (29.09 ± 10.19 seconds (s) (MIA) vs. 5.56 ± 2.17 s (Canon single scan) vs. 20.28 ± 6.81 s (Optovue) (p < 0.001)). IQS showed no significant differences between the devices and between the recording protocols. PSNR was 12.38 ± 0.20 (Canon single scan), 13.01 ± 0.36 (Canon MIA), and 14.34 ± 0.60 (Optovue) (p < 0.001 between the groups). Mean FAZ area in Canon single scans was 0.29 ± 0.06 mm2, 0.27 ± 0.07 mm2 using MIA, and 0.27 ± 0.08 mm2 using the Optovue device. There was no significant difference between mean FAZ measurements before and after averaging (Canon single scan vs. MIA, p = 0.168). VD of the parafoveal area using MIA was significantly lower compared with both single scans (p < 0.001).


MIA can improve PSNR, but it also reduces imaging speed and significantly affects VD measurements. Therefore, when comparing OCTA data, the use of uniform imaging protocols is required.


Optical coherence tomography angiography Spectral-domain optical coherence tomography Image quality Retinal imaging 


Compliance with ethical standards

Conflict of interest

J. L. Lauermann, Bayer, Eyetec, Novartis; Y. Xu, grant (No. 201706270193) from China Scholarship Council; P. Heiduschka, Bayer, Novartis; M. Treder, Bayer, Novartis; F. Alten, Bayer; N. Eter, Heidelberg Engineering, Novartis, Bayer, Sanofi Aventis, Allergan, Bausch and Lomb; M. Alnawaiseh, Novartis.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G (2018) Optical coherence tomography angiography. Prog Retin Eye Res 64:1–55. CrossRefGoogle Scholar
  2. 2.
    Lauermann JL, Treder M, Heiduschka P, Clemens CR, Eter N, Alten F (2017) Impact of eye-tracking technology on OCT-angiography imaging quality in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 255(8):1535–1542. CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang M, Hwang TS, Campbell JP, Bailey ST, Wilson DJ, Huang D, Jia Y (2016) Projection-resolved optical coherence tomographic angiography. Biomed Opt Express 7(3):816–828. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Spaide RF, Curcio CA (2017) Evaluation of segmentation of the superficial and deep vascular layers of the retina by optical coherence tomography angiography instruments in normal eyes. JAMA Ophthalmol 135(3):259–262. CrossRefPubMedGoogle Scholar
  5. 5.
    Sander B, Larsen M, Thrane L, Hougaard JL, Jorgensen TM (2005) Enhanced optical coherence tomography imaging by multiple scan averaging. Br J Ophthalmol 89(2):207–212. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sakamoto A, Hangai M, Yoshimura N (2008) Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases. Ophthalmology 115(6):1071–1078 e7. CrossRefPubMedGoogle Scholar
  7. 7.
    Uji A, Balasubramanian S, Lei J, Baghdasaryan E, Al-Sheikh M, Sadda SR (2017) Impact of multiple en face image averaging on quantitative assessment from optical coherence tomography angiography images. Ophthalmology 124(7):944–952. CrossRefGoogle Scholar
  8. 8.
    Mo S, Phillips E, Krawitz BD et al (2017) Visualization of radial peripapillary capillaries using optical coherence tomography angiography: the effect of image averaging. PLoS One 12(1):e0169385. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Uji A, Balasubramanian S, Lei J, Baghdasaryan E, Al-Sheikh M, Sadda SR (2017) Choriocapillaris imaging using multiple en face optical coherence tomography angiography image averaging. JAMA Ophthalmol 135(11):1197–1204. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Uji A, Balasubramanian S, Lei J, Baghdasaryan E, Al-Sheikh M, Borrelli E, Sadda SR (2018) Multiple enface image averaging for enhanced optical coherence tomography angiography imaging. Acta Ophthalmol. CrossRefGoogle Scholar
  11. 11.
    Waheed NK, Duker JS (2017) Image averaging, a powerful tool in optical coherence tomography and optical coherence tomography angiography. JAMA Ophthalmol 135(11):1204–1205. CrossRefPubMedGoogle Scholar
  12. 12.
    Murakawa S, Maruko I, Kawano T, Hasegawa T, Iida T (2019) Choroidal neovascularization imaging using multiple en face optical coherence tomography angiography image averaging. Graefes Arch Clin Exp Ophthalmol 257(6):1119–1125. CrossRefPubMedGoogle Scholar
  13. 13.
    Huang D, Jia Y, Gao SS, Lumbroso B, Rispoli M (2016) Optical coherence tomography angiography using the optovue device. Dev Ophthalmol 56:6–12. CrossRefPubMedGoogle Scholar
  14. 14.
    Rommel F, Siegfried F, Kurz M, Brinkmann MP, Rothe M, Rudolf M, Grisanti S, Ranjbar M (2018) Impact of correct anatomical slab segmentation on foveal avascular zone measurements by optical coherence tomography angiography in healthy adults. J Curr Ophthalmol 30(2):156–160. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lauermann JL, Woetzel AK, Treder M et al (2018) Prevalences of segmentation errors and motion artifacts in OCT-angiography differ among retinal diseases. Graefes Arch Clin Exp Ophthalmol 256(10):1807–1816. CrossRefPubMedGoogle Scholar
  16. 16.
    Welstead ST (1999) Fractal and wavelet image compression techniques. SPIE Publication pp 155–156. ISBN 978-0-8194-3503-3Google Scholar
  17. 17.
    Alnawaiseh M, Schubert F, Heiduschka P, Eter N (2019) Optical Coherence Tomography Angiography in Patients with Retinitis Pigmentosa. Retina 39(1):210–217. CrossRefPubMedGoogle Scholar
  18. 18.
    Alnawaiseh M, Schubert F, Nelis P, Wirths G, Rosentreter A, Eter N (2016) Optical coherence tomography (OCT) angiography findings in retinal arterial macroaneurysms. BMC Ophthalmol 16:120. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jia Y, Wei E, Wang X et al (2014) Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 121(7):1322–1332. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jia Y, Bailey ST, Wilson DJ et al (2014) Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 121(7):1435–1444. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nelis P, Kleffner I, Burg MC, Clemens CR, Alnawaiseh M, Motte J, Marziniak M, Eter N, Alten F (2018) OCT-angiography reveals reduced vessel density in the deep retinal plexus of CADASIL patients. Sci Rep 8(1):8148. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Schmitz B, Nelis P, Rolfes F, Alnawaiseh M, Klose A, Krüger M, Eter N, Brand SM, Alten F (2018) Effects of high-intensity interval training on optic nerve head and macular perfusion using optical coherence tomography angiography in healthy adults. Atherosclerosis 274:8–15. CrossRefPubMedGoogle Scholar
  23. 23.
    Lahme L, Esser EL, Mihailovic N, Schubert F, Lauermann J, Johnen A, Eter N, Duning T, Alnawaiseh M (2018) Evaluation of ocular perfusion in Alzheimer’s disease using optical coherence tomography angiography. J Alzheimers Dis 66(4):1745–1752. CrossRefPubMedGoogle Scholar
  24. 24.
    Ishibazawa A, Nagaoka T, Takahashi A et al (2015) Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol 160(1):35–44 e1. CrossRefGoogle Scholar
  25. 25.
    Alnawaiseh M, Brand C, Bormann E, Wistuba J, Eter N, Heiduschka P (2017) Quantitative analysis of retinal perfusion in mice using optical coherence tomography angiography. Exp Eye Res 164:151–156. CrossRefPubMedGoogle Scholar
  26. 26.
    Alnawaiseh M, Ertmer C, Seidel L et al (2018) Feasibility of optical coherence tomography angiography to assess changes in retinal microcirculation in ovine haemorrhagic shock. Crit Care 22(1):138. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lauermann JL, Eter N, Alten F (2018) Optical coherence tomography angiography offers new insights into choriocapillaris perfusion. Ophthalmologica 239(2-3):74–84. CrossRefPubMedGoogle Scholar
  28. 28.
    Corvi F, Pellegrini M, Erba S, Cozzi M, Staurenghi G, Giani A (2018) Reproducibility of vessel density, fractal dimension, and foveal avascular zone using 7 different optical coherence tomography angiography devices. Am J Ophthalmol 186:25–31. CrossRefPubMedGoogle Scholar
  29. 29.
    Munk MR, Giannakaki-Zimmermann H, Berger L, Huf W, Ebneter A, Wolf S, Zinkernagel MS (2017) OCT-angiography: a qualitative and quantitative comparison of 4 OCT-A devices. PLoS One 12(5):e0177059. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Arya M, Rebhun CB, Alibhai AY, Chen X, Moreira-Neto C, Baumal CR, Reichel E, Witkin AJ, Duker JS, Sadda SR, Waheed NK (2018) Parafoveal retinal vessel density assessment by optical coherence tomography angiography in healthy eyes. Ophthalmic Surg Lasers Imaging Retina 49(10):S5–S17. CrossRefPubMedGoogle Scholar
  31. 31.
    Spaide RF, Fujimoto JG, Waheed NK (2015) Image artifacts in optical coherence tomography angiography. Retina 35(11):2163–2180. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Jung JJ, Chen MH, Shi Y, Nassisi M, Marion K, Sadda SR, Hoang QV (2019) Correlation of en face optical coherence tomography angiography averaging versus single-image quantitative measurements with retinal vein occlusion visual outcomes. Retina.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of OphthalmologyUniversity of Muenster Medical CenterMuensterGermany

Personalised recommendations