Changes in choroidal vascular parameters following pan-retinal photocoagulation using swept-source optical coherence tomography

  • Jee Taek KimEmail author
  • Nari Park
Retinal Disorders



To assess the effect of pan-retinal photocoagulation (PRP) on choroidal vascular parameters in eyes with advanced diabetic retinopathy (DR).


Forty patients (65 eyes) with severe nonproliferative DR or proliferative DR who underwent PRP were included. Changes in choroidal vascular parameters were assessed at 3, 6, and 12 months after PRP by using swept-source optical coherence tomography (OCT) and OCT angiography and were compared with baseline values.


Choroidal vascularity index (CVI) significantly decreased from 66.27% ± 1.55% at baseline to 65.85% ± 1.61%, 65.77% ± 1.29%, and 65.74% ± 1.60% at 3, 6, and 12 months after PRP, respectively. The ratio of luminal area to stromal area (L/S ratio) also significantly decreased from 1.98 ± 0.15 at baseline to 1.94 ± 0.14, 1.95 ± 0.13, and 1.93 ± 0.14 at 3, 6, and 12 months after PRP, respectively. The subfoveal choroidal thickness (SFCT) similarly showed a significant decrease from 319.50 ± 56.64 μm at baseline to 299. 07 ± 51.14 μm, 294.70 ± 58.96 μm, and 280.93 ± 53.57 μm at 3, 6, and 12 months after PRP, respectively. However, the choriocapillaris vessel density in both the fovea and parafovea showed no significant differences following PRP.


Eyes with advanced DR showed a significant reduction in CVI, L/S ratio, and SFCT over 12 months after PRP treatment.


Choroidal vascular index Diabetic retinopathy Pan-retinal photocoagulation 


Funding information

This work was supported by the National Research Foundation of Korea (NRF-2015R1C1A1A01054285; NRF-2019R1H1A1035593) by the Ministry of Science, Information & Communication Technology (ICT), and Future Planning.

Compliance with ethical standards

Conflict of interest

Author JT Kim declares that he has no conflict of interest. Author N Park declares that she has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Chung-Ang University Hospital, Seoul, South Korea and with the 1964 Helsinki declaration.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Zheng Y, He M, Congdon N (2012) The worldwide epidemic of diabetic retinopathy. Indian J Ophthalmol 60:428–431. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hidayat AA, Fine BS (1985) Diabetic choroidopathy. Light and electron microscopic observations of seven cases. Ophthalmology 92:512–522CrossRefGoogle Scholar
  3. 3.
    Cao J, McLeod S, Merges CA, Lutty GA (1998) Choriocapillaris degeneration and related pathologic changes in human diabetic eyes. Arch Ophthalmol 116:589–597CrossRefGoogle Scholar
  4. 4.
    Lutty GA (2017) Diabetic choroidopathy. Vis Res 139:161–167. CrossRefPubMedGoogle Scholar
  5. 5.
    Weinberger D, Kramer M, Priel E, Gaton DD, Axer-Siegel R, Yassur Y (1998) Indocyanine green angiographic findings in nonproliferative diabetic retinopathy. Am J Ophthalmol 126:238–247CrossRefGoogle Scholar
  6. 6.
    Nickla DL, Wallman J (2010) The multifunctional choroid. Prog Retin Eye Res 29:144–168. CrossRefPubMedGoogle Scholar
  7. 7.
    Kim JT, Lee DH, Joe SG, Kim JG, Yoon YH (2013) Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients. Invest Ophthalmol Vis Sci 54:3378–3384. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang Z, Meng X, Wu Z, Zou W, Zhang J, Zhu D, Chen T, Zhang Q (2015) Changes in choroidal thickness after Panretinal photocoagulation for diabetic retinopathy: a 12-week longitudinal study. Invest Ophthalmol Vis Sci 56:2631–2638. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Okamoto M, Matsuura T, Ogata N (2016) Effects of PANRETINAL photocoagulation on choroidal thickness and choroidal blood flow in patients with severe NONPROLIFERATIVE diabetic retinopathy. Retina 36:805–811. CrossRefPubMedGoogle Scholar
  10. 10.
    Tan KA, Laude A, Yip V, Loo E, Wong EP, Agrawal R (2016) Choroidal vascularity index - a novel optical coherence tomography parameter for disease monitoring in diabetes mellitus? Acta Ophthalmol 94:e612–e616. CrossRefPubMedGoogle Scholar
  11. 11.
    Agrawal R, Chhablani J, Tan KA, Shah S, Sarvaiya C, Banker A (2016) Choroidal vascularity index in central serous CHORIORETINOPATHY. Retina 36:1646–1651. CrossRefPubMedGoogle Scholar
  12. 12.
    Wei X, Ting DSW, Ng WY, Khandelwal N, Agrawal R, Cheung CMG (2017) CHOROIDAL VASCULARITY INDEX: a novel optical coherence tomography based parameter in patients with exudative age-related macular degeneration. Retina 37:1120–1125. CrossRefPubMedGoogle Scholar
  13. 13.
    Ting DS, Cheung GC, Lim LS, Yeo IY (2015) Comparison of swept source optical coherence tomography and spectral domain optical coherence tomography in polypoidal choroidal vasculopathy. Clin Exp Ophthalmol 43:815–819. CrossRefPubMedGoogle Scholar
  14. 14.
    Wang JC, Lains I, Silverman RF, Sobrin L, Vavvas DG, Miller JW, Miller JB (2018) Visualization of Choriocapillaris and choroidal vasculature in healthy eyes with En face swept-source optical coherence tomography versus angiography. Transl Vis Sci Technol 7:25. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Early Treatment Diabetic Retinopathy Study Research Group (1991) Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Ophthalmology 98:766–785CrossRefGoogle Scholar
  16. 16.
    Early Treatment Diabetic Retinopathy Study Research Group (1991) Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS report number 12. Ophthalmology 98:823–833CrossRefGoogle Scholar
  17. 17.
    Early Treatment Diabetic Retinopathy Study Research Group (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs--an extension of the modified Airlie house classification. ETDRS report number 10. Ophthalmology 98:786–806CrossRefGoogle Scholar
  18. 18.
    Lee SH, Kim J, Chung H, Kim HC (2014) Changes of choroidal thickness after treatment for diabetic retinopathy. Curr Eye Res 39:736–744. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ohara Z, Tabuchi H, Nakakura S, Yoshizumi Y, Sumino H, Maeda Y, Kiuchi Y (2018) Changes in choroidal thickness in patients with diabetic retinopathy. Int Ophthalmol 38:279–286. CrossRefPubMedGoogle Scholar
  20. 20.
    Kang HM, Lee NE, Choi JH, Koh HJ, Lee SC (2017) Significant reduction of both PERIPAPILLARY and SUBFOVEAL choroidal thickness after PANRETINAL photocoagulation in patients with type 2 diabetes. Retina. CrossRefGoogle Scholar
  21. 21.
    Sonoda S, Sakamoto T, Yamashita T, Shirasawa M, Uchino E, Terasaki H, Tomita M (2014) Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Invest Ophthalmol Vis Sci 55:3893–3899. CrossRefPubMedGoogle Scholar
  22. 22.
    Gupta C, Tan R, Mishra C, Khandelwal N, Raman R, Kim R, Agrawal R, Sen P (2018) Choroidal structural analysis in eyes with diabetic retinopathy and diabetic macular edema-a novel OCT based imaging biomarker. PLoS One 13:e0207435. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kim M, Ha MJ, Choi SY, Park YH (2018) Choroidal vascularity index in type-2 diabetes analyzed by swept-source optical coherence tomography. Sci Rep 8:70. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Grunwald JE, Riva CE, Brucker AJ, Sinclair SH, Petrig BL (1986) Effect of panretinal photocoagulation on retinal blood flow in proliferative diabetic retinopathy. Ophthalmology 93:590–595CrossRefGoogle Scholar
  25. 25.
    Grunwald JE, Brucker AJ, Petrig BL, Riva CE (1989) Retinal blood flow regulation and the clinical response to panretinal photocoagulation in proliferative diabetic retinopathy. Ophthalmology 96:1518–1522CrossRefGoogle Scholar
  26. 26.
    Patel V, Rassam S, Newsom R, Wiek J, Kohner E (1992) Retinal blood flow in diabetic retinopathy. BMJ 305:678–683CrossRefGoogle Scholar
  27. 27.
    Song Y, Tani T, Omae T, Ishibazawa A, Yoshioka T, Takahashi K, Akiba M, Yoshida A (2018) Retinal blood flow reduction after panretinal photocoagulation in type 2 diabetes mellitus: Doppler optical coherence tomography flowmeter pilot study. PLoS One 13:e0207288. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Savage HI, Hendrix JW, Peterson DC, Young H, Wilkinson CP (2004) Differences in pulsatile ocular blood flow among three classifications of diabetic retinopathy. Invest Ophthalmol Vis Sci 45:4504–4509. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Iwase T, Kobayashi M, Yamamoto K, Ra E, Terasaki H (2017) Effects of photocoagulation on ocular blood flow in patients with severe non-proliferative diabetic retinopathy. PLoS One 12:e0174427. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Yun C, Huh J, Ahn SM, Lee B, Kim JT, Hwang SY, Kim SW, Oh J (2018) Choriocapillaris flow features and choroidal vasculature in the fellow eyes of patients with acute central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. CrossRefGoogle Scholar
  31. 31.
    Ahn J, Yoo G, Kim JT, Kim SW, Oh J (2018) Choriocapillaris layer imaging with swept-source optical coherence tomography angiography in lamellar and full-thickness macular hole. Graefes Arch Clin Exp Ophthalmol 256:11–21. CrossRefPubMedGoogle Scholar
  32. 32.
    Sayanagi K, Ikuno Y, Uematsu S, Nishida K (2017) Features of the choriocapillaris in myopic maculopathy identified by optical coherence tomography angiography. Br J Ophthalmol 101:1524–1529. CrossRefPubMedGoogle Scholar
  33. 33.
    Wilson DJ, Green WR (1987) Argon laser panretinal photocoagulation for diabetic retinopathy. Scanning electron microscopy of human choroidal vascular casts. Arch Ophthalmol 105:239–242CrossRefGoogle Scholar
  34. 34.
    Lee CJ, Smith JH, Kang-Mieler JJ, Budzynski E, Linsenmeier RA (2011) Decreased circulation in the feline choriocapillaris underlying retinal photocoagulation lesions. Invest Ophthalmol Vis Sci 52:3398–3403. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tan CS, Ouyang Y, Ruiz H, Sadda SR (2012) Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 53:261–266. CrossRefPubMedGoogle Scholar
  36. 36.
    Kinoshita T, Mitamura Y, Shinomiya K, Egawa M, Iwata A, Fujihara A, Ogushi Y, Semba K, Akaiwa K, Uchino E, Sonoda S, Sakamoto T (2017) Diurnal variations in luminal and stromal areas of choroid in normal eyes. Br J Ophthalmol 101:360–364. CrossRefPubMedGoogle Scholar
  37. 37.
    Sarwar S, Hassan M, Soliman MK, Halim MS, Sadiq MA, Afridi R, Agarwal A, Do DV, Nguyen QD, Sepah YJ (2018) Diurnal variation of choriocapillaris vessel flow density in normal subjects measured using optical coherence tomography angiography. Int J Retina Vitreous 4:37. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tan KA, Gupta P, Agarwal A, Chhablani J, Cheng CY, Keane PA, Agrawal R (2016) State of science: choroidal thickness and systemic health. Surv Ophthalmol 61:566–581. CrossRefPubMedGoogle Scholar
  39. 39.
    Agrawal R, Wei X, Goud A, Vupparaboina KK, Jana S, Chhablani J (2017) Influence of scanning area on choroidal vascularity index measurement using optical coherence tomography. Acta Ophthalmol 95:e770–e775. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Ophthalmology, College of MedicineChung-Ang University HospitalSeoulSouth Korea

Personalised recommendations