Advertisement

Analysis of retinal nerve fiber layer thickness in anisometropic amblyopia via optic coherence tomography

  • Gözde SahinEmail author
  • Derya Dal
Retinal Disorders
  • 26 Downloads

Abstract

Objective

To detect retinal nerve fiber layer thickness differences of ambylopic and fellow eyes and ambylopic and control eyes.

Methods

The study comprised a total of 152 eyes recruited from Erzurum Region Training and Research Hospital, Turkey, between January 2018 and May 2018. Anisometropic amblyopia was the only cause of disability (visual acuity ≤ 6/12 and a difference in best-corrected visual acuity (BCVA) between the two eyes of 0.20 logMAR (2 lines on an acuity chart) in amblyopic eyes (n, 74) whereas normal eyes had a best-corrected visual acuity of 6/6 and no morbidities (n, 78). Anisometropic patients were divided into three groups as hyperopic, myopic, and cylindiric. All amblyopic eyes were compared with fellow eye and control group. Retinal nerve fiber layer thickness was analyzed using optic coherence tomography (OCT) (RTVue 100-2, Optovue, Inc. Fremont, CA).

Results

The mean age of the patients was 28.64 ± 8.23 years in amblyopia group and 32.23 ± 8.14 years in control group (p, 0.008). Mean best-corrected visual acuity (BCVA) was 0.36 ± 0.23 in amblyopic eyes, 0.96 ± 0.15 in fellow eyes, and 1.00 ± 0 in control group. Mean refractive error was 2.76 ± 7.84 in amblyopic eyes, 0.42 ± 1.34 in fellow eyes, and 0.12 ± 0.27 in control group. Temporal retinal nerve fiber layer thickness (RNFL-T) was 77.27 ± 10.38 μ, 79.31 ± 9.53 μ, and 81.46 ± 9.86 μ respectively in ambylopic group, fellow eyes, and control eyes (p, 0.036). Superior RNFL-T was 136.23 ± 18.52 μ, 131.91 ± 13.80 μ, and 135.56 ± 14.94 μ respectively in ambylopic group, fellow eyes, and control eyes (p, 0.204). Nasal RNFL-T was 87.99 ± 13.05 μ, 82.16 ± 12.33 μ, and 85.50 ± 10.62 μ respectively in ambylopic group, fellow eyes, and control eyes (p, 0.014). Inferior RNFL-T was 144.85 ± 18.39 μ, 140.55 ± 16.92 μ, and 143.47 ± 17.75 μ respectively in ambylopic group, fellow eyes, and control eyes (p, 0.322). There was statistically significant difference in temporal and nasal quadrants and no statistical difference in superior and inferior quadrants.

Discussion

The presence of amblyopia seems not to be related with RNFL-T so we could ignore anisometropic amblyopia in patients with disease that could be detected and followed via RNFL thickness. Further and larger scaled studies are needed for certain results.

Keywords

Amblyopia Retinal nerve fiber layer Optic coherence tomography 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Simons K (2005) Amblyopia characterization, treatment, and prophylaxis. Surv Ophthalmol 50(2):123–166.  https://doi.org/10.1016/j.survophthal.2004.12.005 Google Scholar
  2. 2.
    Kim MH, Chung TY, Chung ES (2010) Long-term efficacy and rotational stability of AcrySof toric intraocular lens implantation in cataract surgery. Korean J Ophthalmol 24(4):207–212.  https://doi.org/10.3341/kjo.2010.24.4.207 Google Scholar
  3. 3.
    Muckli L, Kiess S, Tonhausen N, Singer W, Goebel R, Sireteanu R (2006) Cerebral correlates of impaired grating perception in individual, psychophysically assessed human amblyopes. Vis Res 46(4):506–526.  https://doi.org/10.1016/j.visres.2005.10.014 Google Scholar
  4. 4.
    Miki A, Liu GT, Goldsmith ZG, Liu CS, Haselgrove JC (2003) Decreased activation of the lateral geniculate nucleus in a patient with anisometropic amblyopia demonstrated by functional magnetic resonance imaging. Ophthalmologica 217(5):365–369.  https://doi.org/10.1159/000071353 Google Scholar
  5. 5.
    Hess RF, Thompson B, Gole G, Mullen KT (2009) Deficient responses from the lateral geniculate nucleus in humans with amblyopia. Eur J Neurosci 29(5):1064–1070.  https://doi.org/10.1111/j.1460-9568.2009.06650.x Google Scholar
  6. 6.
    Barnes GR, Li X, Thompson B, Singh KD, Dumoulin SO, Hess RF (2010) Decreased gray matter concentration in the lateral geniculate nuclei in human amblyopes. Invest Ophthalmol Vis Sci 51(3):1432–1438.  https://doi.org/10.1167/iovs.09-3931 Google Scholar
  7. 7.
    Bruce A, Pacey IE, Bradbury JA, Scally AJ, Barrett BT (2013) Bilateral changes in foveal structure in individuals with amblyopia. Ophthalmology 120(2):395–403.  https://doi.org/10.1016/j.ophtha.2012.07.088 Google Scholar
  8. 8.
    Lempert P (2008) Retinal area and optic disc rim area in amblyopic, fellow, and normal hyperopic eyes: a hypothesis for decreased acuity in amblyopia. Ophthalmology 115(12):2259–2261.  https://doi.org/10.1016/j.ophtha.2008.07.016 Google Scholar
  9. 9.
    Araki S, Miki A, Goto K, Yamashita T, Takizawa G, Haruishi K, Ieki Y, Kiryu J, Yaoeda K (2017) Macular retinal and choroidal thickness in unilateral amblyopia using swept-source optical coherence tomography. BMC Ophthalmol 17(1):167.  https://doi.org/10.1186/s12886-017-0559-3 Google Scholar
  10. 10.
    Al-Haddad CE, Mollayess GM, Cherfan CG, Jaafar DF, Bashshur ZF (2011) Retinal nerve fibre layer and macular thickness in amblyopia as measured by spectral-domain optical coherence tomography. Br J Ophthalmol 95(12):1696–1699.  https://doi.org/10.1136/bjo.2010.195081 Google Scholar
  11. 11.
    Andalib D, Javadzadeh A, Nabai R, Amizadeh Y (2013) Macular and retinal nerve fiber layer thickness in unilateral anisometropic or strabismic amblyopia. J Pediatr Ophthalmol Strabismus 50(4):218–221.  https://doi.org/10.3928/01913913-20130319-02 Google Scholar
  12. 12.
    Szigeti A, Tatrai E, Szamosi A, Vargha P, Nagy ZZ, Nemeth J, DeBuc DC, Somfai GM (2014) A morphological study of retinal changes in unilateral amblyopia using optical coherence tomography image segmentation. PLoS One 9(2):e88363.  https://doi.org/10.1371/journal.pone.0088363 Google Scholar
  13. 13.
    Dickmann A, Petroni S, Salerni A, Dell’Omo R, Balestrazzi E (2009) Unilateral amblyopia: an optical coherence tomography study. J AAPOS 13(2):148–150.  https://doi.org/10.1016/j.jaapos.2008.10.009 Google Scholar
  14. 14.
    Miki A (2010) Retinal nerve fiber layer thickness in recovered and persistent amblyopia. Clin Ophthalmol.  https://doi.org/10.2147/opth.S13145
  15. 15.
    Yalcin E, Balci O (2014) Peripapillary retinal nerve fiber layer and foveal thickness in hypermetropic anisometropic amblyopia. Clin Ophthalmol 8:749–753.  https://doi.org/10.2147/OPTH.S58541 Google Scholar
  16. 16.
    Tugcu B, Araz-Ersan B, Kilic M, Erdogan ET, Yigit U, Karamursel S (2013) The morpho-functional evaluation of retina in amblyopia. Curr Eye Res 38(7):802–809.  https://doi.org/10.3109/02713683.2013.779721 Google Scholar
  17. 17.
    Walker RA, Rubab S, Voll AR, Erraguntla V, Murphy PH (2011) Macular and peripapillary retinal nerve fibre layer thickness in adults with amblyopia. Can J Ophthalmol 46(5):425–427.  https://doi.org/10.1016/j.jcjo.2011.07.013 Google Scholar
  18. 18.
    Wang BZ, Taranath D (2012) A comparison between the amblyopic eye and normal fellow eye ocular architecture in children with hyperopic anisometropic amblyopia. J AAPOS 16(5):428–430.  https://doi.org/10.1016/j.jaapos.2012.06.006 Google Scholar
  19. 19.
    Xu J, Lu F, Liu W, Zhang F, Chen W, Chen J (2013) Retinal nerve fibre layer thickness and macular thickness in patients with esotropic amblyopia. Clin Exp Optom 96(3):267–271.  https://doi.org/10.1111/cxo.12001 Google Scholar
  20. 20.
    Al-Haddad CE, El Mollayess GM, Mahfoud ZR, Jaafar DF, Bashshur ZF (2013) Macular ultrastructural features in amblyopia using high-definition optical coherence tomography. Br J Ophthalmol 97(3):318–322.  https://doi.org/10.1136/bjophthalmol-2012-302434 Google Scholar
  21. 21.
    Dickmann A, Petroni S, Perrotta V, Salerni A, Parrilla R, Aliberti S, Savastano MC, Centra D, Discendenti S, Balestrazzi E (2011) A morpho-functional study of amblyopic eyes with the use of optical coherence tomography and microperimetry. J AAPOS 15(4):338–341.  https://doi.org/10.1016/j.jaapos.2011.03.019 Google Scholar
  22. 22.
    Huynh SC, Samarawickrama C, Wang XY, Rochtchina E, Wong TY, Gole GA, Rose KA, Mitchell P (2009) Macular and nerve fiber layer thickness in amblyopia: the Sydney Childhood Eye Study. Ophthalmology 116(9):1604–1609.  https://doi.org/10.1016/j.ophtha.2009.03.013 Google Scholar
  23. 23.
    Firat PG, Ozsoy E, Demirel S, Cumurcu T, Gunduz A (2013) Evaluation of peripapillary retinal nerve fiber layer, macula and ganglion cell thickness in amblyopia using spectral optical coherence tomography. Int J Ophthalmol 6(1):90–94.  https://doi.org/10.3980/j.issn.2222-3959.2013.01.19 Google Scholar
  24. 24.
    Kantarci FA, Tatar MG, Uslu H, Colak HN, Yildirim A, Goker H, Gurler B (2015) Choroidal and peripapillary retinal nerve fiber layer thickness in adults with anisometropic amblyopia. Eur J Ophthalmol 25(5):437–442.  https://doi.org/10.5301/ejo.5000594 Google Scholar
  25. 25.
    Kim YW, Kim SJ, Yu YS (2013) Spectral-domain optical coherence tomography analysis in deprivational amblyopia: a pilot study with unilateral pediatric cataract patients. Graefes Arch Clin Ophthalmol 251(12):2811–2819.  https://doi.org/10.1007/s00417-013-2494-1 Google Scholar
  26. 26.
    Alotaibi AG, Al Enazi B (2011) Unilateral amblyopia: optical coherence tomography findings. Saudi J Ophthalmol 25(4):405–409.  https://doi.org/10.1016/j.sjopt.2011.06.001 Google Scholar
  27. 27.
    Lim HB, Sung JY, Ahn SI, Jo YJ, Kim JY (2018) Retinal nerve fiber layer thickness in various retinal diseases. Optom Vis Sci 95(3):247–255.  https://doi.org/10.1097/OPX.0000000000001181 Google Scholar
  28. 28.
    Carta A, Mora P, Aldigeri R, Gozzi F, Favilla S, Tedesco S, Calzetti G, Farci R, Barboni P, Bianchi-Marzoli S, Fossarello M, Gandolfi S, Sadun AA (2018) Optical coherence tomography is a useful tool in the differentiation between true edema and pseudoedema of the optic disc. PLoS One 13(11):e0208145.  https://doi.org/10.1371/journal.pone.0208145 Google Scholar
  29. 29.
    Peng A, Kinoshita M, Lai W, Tan A, Qiu X, Zhang L, Li W, Chen L (2018) Retinal nerve fiber layer thickness in optic neuritis with MOG antibodies: a systematic review and meta-analysis. J Neuroimmunol 325:69–73.  https://doi.org/10.1016/j.jneuroim.2018.09.011 Google Scholar
  30. 30.
    Shen T, You Y, Arunachalam S, Fontes A, Liu S, Gupta V, Parratt J, Wang C, Barnett M, Barton J, Chitranshi N, Zhu L, Fraser CL, Graham SL, Klistorner A, Yiannikas C (2018) Differing structural and functional patterns of optic nerve damage in multiple sclerosis and neuromyelitis optica spectrum disorder. Ophthalmology.  https://doi.org/10.1016/j.ophtha.2018.06.022
  31. 31.
    Casas P, Ascaso FJ, Vicente E, Tejero-Garces G, Adiego MI, Cristobal JA (2018) Visual field defects and retinal nerve fiber imaging in patients with obstructive sleep apnea syndrome and in healthy controls. BMC Ophthalmol 18(1):66.  https://doi.org/10.1186/s12886-018-0728-z Google Scholar
  32. 32.
    Blanch RJ, Micieli JA, Oyesiku NM, Newman NJ, Biousse V (2018) Optical coherence tomography retinal ganglion cell complex analysis for the detection of early chiasmal compression. Pituitary 21(5):515–523.  https://doi.org/10.1007/s11102-018-0906-2 Google Scholar
  33. 33.
    Sahin-Atik S, Koc F, Akin-Sari S, Ozmen M (2017) Retinal nerve fiber and optic disc morphology using spectral-domain optical coherence tomography in scleroderma patients. Eur J Ophthalmol 27(3):281–284.  https://doi.org/10.5301/ejo.5000827 Google Scholar
  34. 34.
    Golzan SM, Goozee K, Georgevsky D, Avolio A, Chatterjee P, Shen K, Gupta V, Chung R, Savage G, Orr CF, Martins RN, Graham SL (2017) Retinal vascular and structural changes are associated with amyloid burden in the elderly: ophthalmic biomarkers of preclinical Alzheimer’s disease. Alzheimers Res Ther 9(1):13.  https://doi.org/10.1186/s13195-017-0239-9 Google Scholar
  35. 35.
    Polo V, Satue M, Gavin A, Vilades E, Orduna E, Cipres M, Garcia-Campayo J, Navarro-Gil M, Larrosa JM, Pablo LE, Garcia-Martin E (2018) Ability of swept source OCT to detect retinal changes in patients with bipolar disorder. Eye.  https://doi.org/10.1038/s41433-018-0261-6
  36. 36.
    Coskun M, Sevencan NO (2018) The evaluation of ophthalmic findings in women patients with Iron and vitamin B12 deficiency anemia. Transl Vision Sci Technol 7(4):16.  https://doi.org/10.1167/tvst.7.4.16 Google Scholar
  37. 37.
    Khan AO (2013) A comparison between the amblyopic eye and normal fellow eye ocular architecture in children with hyperopic anisometropic amblyopia. J AAPOS 17(1):115–116.  https://doi.org/10.1016/j.jaapos.2012.11.001 Google Scholar
  38. 38.
    Hoekel J, Narayanan A, Rutlin J, Lugar H, Al-Lozi A, Hershey T, Tychsen L (2018) Visual pathway function and structure in Wolfram syndrome: patient age, variation and progression. BMJ Open Ophthalmol 3(1):e000081.  https://doi.org/10.1136/bmjophth-2017-000081 Google Scholar
  39. 39.
    Rohani M, Meysamie A, Zamani B, Sowlat MM, Akhoundi FH (2018) Reduced retinal nerve fiber layer (RNFL) thickness in ALS patients: a window to disease progression. J Neurol 265(7):1557–1562.  https://doi.org/10.1007/s00415-018-8863-2 Google Scholar
  40. 40.
    Korkmaz S, Guclu H, Hatipoglu ES, Ficicioglu S, Gurlu V, Ozal SA (2018) Metabolic syndrome may exacerbate macular and retinal damage in psoriasis vulgaris. Ocul Immunol Inflamm:1–7.  https://doi.org/10.1080/09273948.2018.1476556
  41. 41.
    Matlach J, Wagner M, Malzahn U, Schmidtmann I, Steigerwald F, Musacchio T, Volkmann J, Grehn F, Gobel W, Klebe S (2018) Retinal changes in Parkinson’s disease and glaucoma. Parkinsonism Relat Disord.  https://doi.org/10.1016/j.parkreldis.2018.06.016
  42. 42.
    Moschos MM, Mostrou G, Psimenidou E, Spoulou V, Theodoridou M (2007) Objective analysis of retinal function in HIV-positive children without retinitis using optical coherence tomography. Ocul Immunol Inflamm 15(4):319–323.  https://doi.org/10.1080/09273940701375154 Google Scholar
  43. 43.
    Akay F, Gundogan FC, Yolcu U, Toyran S, Tunc E, Uzun S (2016) Retinal structural changes in systemic arterial hypertension: an OCT study. Eur J Ophthalmol 26(5):436–441.  https://doi.org/10.5301/ejo.5000740 Google Scholar
  44. 44.
    Kalenderoglu A, Celik M, Sevgi-Karadag A, Egilmez OB (2016) Optic coherence tomography shows inflammation and degeneration in major depressive disorder patients correlated with disease severity. J Affect Disord 204:159–165.  https://doi.org/10.1016/j.jad.2016.06.039 Google Scholar
  45. 45.
    Ugurlu E, Pekel G, Altinisik G, Bozkurt K, Can I, Evyapan F (2018) New aspect for systemic effects of COPD: eye findings. Clin Respir J 12(1):247–252.  https://doi.org/10.1111/crj.12523 Google Scholar
  46. 46.
    Repka MX, Kraker RT, Tamkins SM, Suh DW, Sala NA, Beck RW (2009) Retinal nerve fiber layer thickness in amblyopic eyes. Am J Ophthalmol 148(1):143–147.  https://doi.org/10.1016/j.ajo.2009.01.015 Google Scholar
  47. 47.
    Gunay M, Dogru M, Celik G, Gunay BO (2018) Swept-source optical coherence tomography analysis in asthmatic children under inhaled corticosteroid therapy. Cutan Ocul Toxicol:1–5.  https://doi.org/10.1080/15569527.2018.1539009
  48. 48.
    Lee JY, Choi JH, Park KA, Oh SY (2018) Ganglion cell layer and inner plexiform layer as predictors of vision recovery in ethambutol-induced optic neuropathy: a longitudinal OCT analysis. Invest Ophthalmol Vis Sci 59(5):2104–2109.  https://doi.org/10.1167/iovs.17-22988 Google Scholar
  49. 49.
    Gemelli H, Fidalgo TM, Gracitelli CPB, de Andrade EP (2018) Retinal nerve fiber layer analysis in cocaine users. Psychiatry Res 271:226–229.  https://doi.org/10.1016/j.psychres.2018.11.058 Google Scholar
  50. 50.
    Wu SQ, Zhu LW, Xu QB, Xu JL, Zhang Y (2013) Macular and peripapillary retinal nerve fiber layer thickness in children with hyperopic anisometropic amblyopia. Int J Ophthalmol 6(1):85–89.  https://doi.org/10.3980/j.issn.2222-3959.2013.01.18 Google Scholar
  51. 51.
    Yakar K, Kan E, Alan A, Alp MH, Ceylan T (2015) Retinal nerve fibre layer and macular thicknesses in adults with hyperopic anisometropic amblyopia. J Ophthalmol 2015:946467.  https://doi.org/10.1155/2015/946467 Google Scholar
  52. 52.
    Varma R, Bazzaz S, Lai M (2003) Optical tomography–measured retinal nerve fiber layer thickness in normal Latinos. Invest Opthalmol Vis Sci 44(8):3369.  https://doi.org/10.1167/iovs.02-0975 Google Scholar
  53. 53.
    Poinoosawmy D, Fontana L, Wu JX (1997) Variation of nerve fibre layer thickness measurements with age and ethnicity by scanning laser polarimetry. Br J Ophthalmol 81:350–354Google Scholar
  54. 54.
    El-Dairi MA, Asrani SG, Enyedi LB (2009) Optical coherence tomography in the eyes of normal children. Arch Ophthalmol 127:50–58Google Scholar
  55. 55.
    Huynh SC, Wang XY, Rochtchina E, Mitchell P (2006) Peripapillary retinal nerve fiber layer thickness in a population of 6-year-old children: findings by optical coherence tomography. Ophthalmology 113(9):1583–1592.  https://doi.org/10.1016/j.ophtha.2006.02.067 Google Scholar
  56. 56.
    Wagner-Schuman M, Dubis AM, Nordgren RN, Lei Y, Odell D, Chiao H, Weh E, Fischer W, Sulai Y, Dubra A, Carroll J (2011) Race- and sex-related differences in retinal thickness and foveal pit morphology. Invest Ophthalmol Vis Sci 52(1):625–634.  https://doi.org/10.1167/iovs.10-5886 Google Scholar
  57. 57.
    von Noorden GK, Crawford ML, Levacy R (1983) The lateral geniculate nucleus in human anisometropic amblyopia. Invest Ophthalmol Vis Sci 24:788–790Google Scholar
  58. 58.
    von Noorden GK, Crawford ML (1992) The lateral geniculate nucleus in human strabismic amblyopia. Invest Ophthalmol Vis Sci 33:2729–2732 27,28Google Scholar
  59. 59.
    Crawford ML, von Noorden GK (1980) Optically induced concomitant strabismus in monkeys. Invest Ophthalmol Vis Sci 19:1105–1109Google Scholar
  60. 60.
    Wiesel TN, Hubel DH (1963) Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body. J Neurophysiol 26:978–993Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ophthalmology DepartmentErzurum Region Training and Research HospitalErzurumTurkey

Personalised recommendations