Advertisement

A novel strategy for quantification of panoramic en face optical coherence tomography angiography scan field

  • Shin Kadomoto
  • Akihito UjiEmail author
  • Yuki Muraoka
  • Tadamichi Akagi
  • Manabu Miyata
  • Akitaka Tsujikawa
Retinal Disorders

Abstract

Purpose

To compare the retinal area measured on a panoramic en face optical coherence tomography angiography (OCTA) image with that on an ultra-widefield fluorescein angiography (UWF FA) image.

Methods

Sixteen eyes (11 with branch retinal vein occlusion, 2 with central retinal vein occlusion, 1 with branch retinal artery occlusion, and 2 with hypertensive retinopathy) were included in this study. A panoramic en face OCTA image was created from five single non-panoramic en face OCTA 12 × 12-mm images. The panoramic OCTA image was superimposed on the corresponding UWF FA image after image registration; the total retinal area was measured using the grid displayed on the UWF FA image. The area on the UWF FA image was measured using stereographic projection software.

Results

The area of retina measured on a single non-panoramic 12 × 12-mm en face OCTA image, a panoramic en face OCTA image, and a UWF FA image was 152.4 ± 3.4 mm2, 369.6 ± 26.9 mm2, and 813.1 ± 24.4 mm2, respectively (P < 0.0001). The panoramic OCTA image was 2.42-fold larger than a single non-panoramic 12 × 12-mm OCTA image and 0.46-fold smaller than a UWF FA image.

Conclusions

Grid-based measurements using an OCTA image superimposed on the UWF FA image enabled measurement on the panoramic en face OCTA image with minimum influence of magnification errors because of the curved surface of the retina.

Keywords

Optical coherence tomography angiography Ultra-widefield Panoramic Fluorescein angiography 

Notes

Compliance with ethical standards

Conflicts of interest

Shin Kadomoto, None; Akihito Uji, Alcon (R), Senju (R), Canon (R); Yuki Muraoka, Bayer (R), Novartis Pharma K.K. (R), Senju (R), Nidek (R); Tadamichi Akagi, Alcon (R), Kowa (R), Pfizer (R), Santen (R), Senju (R), Canon (R); Manabu Miyata, Alcon (R), Santen (R); Akitaka Tsujikawa, Pfizer (F, R), Novartis Pharma K.K. (F, R), Bayer (F, R), Alcon (F, R), Santen (F, R), Senju (F, R), Nidek (R), Kowa (F, R), Hoya (F, R), AMO Japan (F, R).

Ethical approval

All procedures were performed in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Meeting presentations

None.

Supplementary material

417_2019_4310_Fig6_ESM.png (1.5 mb)
SUPPLEMENTAL FIGURE 1

Appearance and grid scale of the model eye. (A) Appearance of the model eye used for measurement of the area of the en face OCTA image. (B) The model eye attached to the Optos 200Tx imaging system using the zig which could fix the model eye in the appropriate position.(C) The fundus image of the model eye obtained by using the Optos 200Tx imaging system. The fundus was covered with a grid with spatial intervals of approximately 500 μm. (PNG 1495 kb)

417_2019_4310_MOESM1_ESM.tiff (5.4 mb)
High Resolution Image (TIFF 5552 kb)

References

  1. 1.
    Merin S, Ber I, Ivry M (1978) Retinal ischemia (capillary nonperfusion) and retinal neovascularization in patients with diabetic retinopathy. Ophthalmologica 177:140–145.  https://doi.org/10.1159/000308758 CrossRefGoogle Scholar
  2. 2.
    Magargal LE, Donoso LA, Sanborn GE (1982) Retinal ischemia and risk of neovascularization following central retinal vein obstruction. Ophthalmology 89:1241–1245CrossRefGoogle Scholar
  3. 3.
    Niki T, Muraoka K, Shimizu K (1984) Distribution of capillary nonperfusion in early-stage diabetic retinopathy. Ophthalmology 91:1431–1439CrossRefGoogle Scholar
  4. 4.
    Mesquida M, Llorenc V, Fontenla JR, Navarro MJ, Adan A (2014) Use of ultra-wide-field retinal imaging in the management of active Behcet retinal vasculitis. Retina 34:2121–2127.  https://doi.org/10.1097/IAE.0000000000000197 CrossRefGoogle Scholar
  5. 5.
    Wessel MM, Aaker GD, Parlitsis G, Cho M, D'Amico DJ, Kiss S (2012) Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy. Retina 32:785–791.  https://doi.org/10.1097/IAE.0b013e3182278b64 CrossRefGoogle Scholar
  6. 6.
    Kwiterovich KA, Maguire MG, Murphy RP, Schachat AP, Bressler NM, Bressler SB, Fine SL (1991) Frequency of adverse systemic reactions after fluorescein angiography. Results of a prospective study. Ophthalmology 98:1139–1142CrossRefGoogle Scholar
  7. 7.
    Mendis KR, Balaratnasingam C, Yu P, Barry CJ, McAllister IL, Cringle SJ, Yu DY (2010) Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail. Invest Ophthalmol Vis Sci 51:5864–5869.  https://doi.org/10.1167/iovs.10-5333 CrossRefGoogle Scholar
  8. 8.
    Spaide RF, Klancnik JM Jr, Cooney MJ (2015) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 133:45–50.  https://doi.org/10.1001/jamaophthalmol.2014.3616 CrossRefGoogle Scholar
  9. 9.
    Kadomoto S, Muraoka Y, Ooto S, Miwa Y, Iida Y, Suzuma K, Murakami T, Ghashut R, Tsujikawa A, Yoshimura N (2018) Evaluation of macular ischemia in eyes with branch retinal vein occlusion: an optical coherence tomography angiography study. Retina 38:272–282.  https://doi.org/10.1097/IAE.0000000000001541 CrossRefGoogle Scholar
  10. 10.
    Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH (2016) Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:OCT362–OCT370.  https://doi.org/10.1167/iovs.15-18904 CrossRefGoogle Scholar
  11. 11.
    Xu D, Davila JP, Rahimi M, Rebhun CB, Alibhai AY, Waheed NK, Sarraf D (2018) Long-term progression of type 1 neovascularization in age-related macular degeneration using optical coherence tomography angiography. Am J Ophthalmol 187:10–20.  https://doi.org/10.1016/j.ajo.2017.12.005 CrossRefGoogle Scholar
  12. 12.
    Wang X, Jia Y, Spain R, Potsaid B, Liu JJ, Baumann B, Hornegger J, Fujimoto JG, Wu Q, Huang D (2014) Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthalmol 98:1368–1373.  https://doi.org/10.1136/bjophthalmol-2013-304547 CrossRefGoogle Scholar
  13. 13.
    Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, Kraus MF, Fujimoto JG, Huang D (2014) Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 121:1322–1332.  https://doi.org/10.1016/j.ophtha.2014.01.021 CrossRefGoogle Scholar
  14. 14.
    Hirano T, Kakihara S, Toriyama Y, Nittala MG, Murata T, Sadda S (2017) Wide-field en face swept-source optical coherence tomography angiography using extended field imaging in diabetic retinopathy. Br J Ophthalmol 102:1199–1203.  https://doi.org/10.1136/bjophthalmol-2017-311358 CrossRefGoogle Scholar
  15. 15.
    Chung CY, Li KKW (2017) Optical coherence tomography angiography wide-field montage in branch retinal vein occlusion before and after anti-vascular endothelial-derived growth factor injection. Int Ophthalmol 38:1305–1307.  https://doi.org/10.1007/s10792-017-0568-5 CrossRefGoogle Scholar
  16. 16.
    Sawada O, Ichiyama Y, Obata S, Ito Y, Kakinoki M, Sawada T, Saishin Y, Ohji M (2018) Comparison between wide-angle OCT angiography and ultra-wide field fluorescein angiography for detecting non-perfusion areas and retinal neovascularization in eyes with diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 256:1275–1280.  https://doi.org/10.1007/s00417-018-3992-y CrossRefGoogle Scholar
  17. 17.
    Escudero-Sanz I, Navarro R (1999) Off-axis aberrations of a wide-angle schematic eye model. J Opt Soc Am A Opt Image Sci Vis 16:1881–1891CrossRefGoogle Scholar
  18. 18.
    Uji A, Balasubramanian S, Lei J, Baghdasaryan E, Al-Sheikh M, Sadda SR (2017) Impact of multiple En face image averaging on quantitative assessment from optical coherence tomography angiography images. Ophthalmology 124:944–952.  https://doi.org/10.1016/j.ophtha.2017.02.006 CrossRefGoogle Scholar
  19. 19.
    Uji A, Yoshimura N (2015) Application of extended field imaging to optical coherence tomography. Ophthalmology 122:1272–1274.  https://doi.org/10.1016/j.ophtha.2014.12.035 CrossRefGoogle Scholar
  20. 20.
    Bennett AG, Rudnicka AR, Edgar DF (1994) Improvements on Littmann's method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalmol 232:361–367CrossRefGoogle Scholar
  21. 21.
    (1981) Diabetic retinopathy study. Report Number 6. Design, methods, and baseline results. Report Number 7. A modification of the Airlie House classification of diabetic retinopathy. Prepared by the Diabetic Retinopathy. Invest Ophthalmol Vis Sci 21(1):147–226Google Scholar
  22. 22.
    Sim DA, Keane PA, Rajendram R, Karampelas M, Selvam S, Powner MB, Fruttiger M, Tufail A, Egan CA (2014) Patterns of peripheral retinal and central macula ischemia in diabetic retinopathy as evaluated by ultra-widefield fluorescein angiography. Am J Ophthalmol 158:144–153 e141.  https://doi.org/10.1016/j.ajo.2014.03.009 CrossRefGoogle Scholar
  23. 23.
    Nicholson BP, Nigam D, Miller D, Agron E, Dalal M, Jacobs-El N, da Rocha Lima B, Cunningham D, Nussenblatt R, Sen HN (2014) Comparison of wide-field fluorescein angiography and 9-field montage angiography in uveitis. Am J Ophthalmol 157:673–677.  https://doi.org/10.1016/j.ajo.2013.12.005 CrossRefGoogle Scholar
  24. 24.
    Samarawickrama C, Hong T, Jonas JB, Mitchell P (2012) Measurement of normal optic nerve head parameters. Surv Ophthalmol 57:317–336.  https://doi.org/10.1016/j.survophthal.2011.12.001 CrossRefGoogle Scholar
  25. 25.
    Oishi A, Hidaka J, Yoshimura N (2014) Quantification of the image obtained with a wide-field scanning ophthalmoscope. Invest Ophthalmol Vis Sci 55:2424–2431.  https://doi.org/10.1167/iovs.13-13738 CrossRefGoogle Scholar
  26. 26.
    Kakihara S, Hirano T, Iesato Y, Imai A, Toriyama Y, Murata T (2018) Extended field imaging using swept-source optical coherence tomography angiography in retinal vein occlusion. Jpn J Ophthalmol 62:274–279.  https://doi.org/10.1007/s10384-018-0590-9 CrossRefGoogle Scholar
  27. 27.
    Kimura M, Nozaki M, Yoshida M, Ogura Y (2016) Wide-field optical coherence tomography angiography using extended field imaging technique to evaluate the nonperfusion area in retinal vein occlusion. Clin Ophthalmol 10:1291–1295.  https://doi.org/10.2147/OPTH.S108630 CrossRefGoogle Scholar
  28. 28.
    Asakuma T, Yasuda M, Ninomiya T, Noda Y, Arakawa S, Hashimoto S, Ohno-Matsui K, Kiyohara Y, Ishibashi T (2012) Prevalence and risk factors for myopic retinopathy in a Japanese population: the Hisayama study. Ophthalmology 119:1760–1765.  https://doi.org/10.1016/j.ophtha.2012.02.034 CrossRefGoogle Scholar
  29. 29.
    Spaide RF (2011) Peripheral areas of nonperfusion in treated central retinal vein occlusion as imaged by wide-field fluorescein angiography. Retina 31:829–837.  https://doi.org/10.1097/IAE.0b013e31820c841e CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shin Kadomoto
    • 1
  • Akihito Uji
    • 1
    Email author
  • Yuki Muraoka
    • 1
  • Tadamichi Akagi
    • 1
  • Manabu Miyata
    • 1
  • Akitaka Tsujikawa
    • 1
  1. 1.Department of Ophthalmology and Visual SciencesKyoto University Graduate School of MedicineKyotoJapan

Personalised recommendations