Advertisement

Early detection of cone photoreceptor cell loss in retinitis pigmentosa using adaptive optics scanning laser ophthalmoscopy

  • Shunji Nakatake
  • Yusuke MurakamiEmail author
  • Jun Funatsu
  • Yoshito Koyanagi
  • Masato Akiyama
  • Yukihide Momozawa
  • Tatsuro Ishibashi
  • Koh-Hei Sonoda
  • Yasuhiro Ikeda
Retinal Disorders

Abstract

Purpose

The purpose of the study was to investigate the characteristics of the parafoveal cone density changes in patients with retinitis pigmentosa (RP) using adaptive optics scanning laser ophthalmoscopy (AO-SLO).

Methods

A total of 14 eyes of RP patients and 10 eyes of control subjects were examined. High-resolution images of cone photoreceptor cells were obtained with a Canon AO-SLO system in the four retinal regions of the superior, inferior, temporal, and nasal areas located 1.0 mm from the central fovea. The relationships of cone density with optical coherence tomography (OCT) findings and the visual sensitivity of the static perimetry tests were analyzed in RP patients.

Results

The averaged cone densities in RP patients were decreased at 1.0 mm eccentricity from the fovea (11,899 cells/mm2) compared with those in control subjects (16,647 cells/mm2; P < 0.01). The cone density was substantially decreased even in RP patients with an intact interdigitation zone at the examined area (12,865 cells/mm2; P < 0.01 vs. controls) and preserved visual sensitivity with > 35 dB (13,019 cells/mm2; P < 0.001 vs. controls).

Conclusions

In RP, cone photoreceptor cell loss occurred in the parafoveal region with a preserved EZ/IZ or visual sensitivity. AO-SLO may be a useful modality to detect early changes of cone photoreceptor cells in RP patients.

Keywords

Retinitis pigmentosa Cone photoreceptor cell Cone density Adaptive optics scanning laser ophthalmoscopy (AO-SLO) 

Notes

Acknowledgments

We thank K. Fujiwara, Y. Kaizu, and T. Hisatomi for their support for data analysis and K. Nomura and T. Kitamura for their technical assistance with the AO-SLO imaging.

Funding

This work was supported by a Japanese Ministry of Education, Culture, Sports, Science, and Technology grant (no. 16H06268 to YM), a Japan Intractable Disease Research Foundation grant (to YM), a Japanese Retinitis Pigmentosa Society grant (to YM), and a Rohto Award (to YM).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Supplementary material

417_2019_4307_MOESM1_ESM.pdf (30 kb)
Fig 1 The hexagon ratio and average (Ave) nearest-neighbor distance (NND)/expected (Exp) NND ratio of control subjects and RP patients. The quantification of the hexagon ratio (A) and the Ave NND/Exp NND ratio (B) of control subjects and RP patients. Data are presented as whisker-box-plots. The central horizontal bars indicate the medians, boxes indicate 25th to 75th percentiles, and whiskers indicate 1.5 times the interquartile range from the bottom and the top of the box. Wilcoxon rank sum tests were performed to assess significance. **p < 0.01. (PDF 30 kb)
417_2019_4307_MOESM2_ESM.pdf (30 kb)
Fig 2 The cone density according to the status of FAF ring at 1.0 mm eccentricity from the fovea in RP patients. The quantification of the average cone density of normal subjects, RP patients FAF ring wider than 1.0 mm or narrower than 1.0 mm from foveas. Data are presented as whisker-box-plots. The central horizontal bars indicate the medians, boxes indicate the 25th to 75th percentiles, and whiskers indicate 1.5 times the interquartile range from the bottom and the top of the box. Steel’s test was performed to assess significance. **p < 0.01. (PDF 29 kb)

References

  1. 1.
    Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368(9549):1795–1809.  https://doi.org/10.1016/s0140-6736(06)69740-7 CrossRefGoogle Scholar
  2. 2.
    Daiger SP, Sullivan LS, Bowne SJ (2013) Genes and mutations causing retinitis pigmentosa. Clin Genet 84(2):132–141.  https://doi.org/10.1111/cge.12203 CrossRefGoogle Scholar
  3. 3.
    Punzo C, Kornacker K, Cepko CL (2009) Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12(1):44–52.  https://doi.org/10.1038/nn.2234 CrossRefGoogle Scholar
  4. 4.
    Huang YM, Yin ZQ, Liu K, Huo SJ (2011) Temporal and spatial characteristics of cone degeneration in RCS rats. Jpn J Ophthalmol 55(2):155–162.  https://doi.org/10.1007/s10384-010-0908-8 CrossRefGoogle Scholar
  5. 5.
    Ji Y, Zhu CL, Grzywacz NM, Lee EJ (2012) Rearrangement of the cone mosaic in the retina of the rat model of retinitis pigmentosa. J Comp Neurol 520(4):874–888.  https://doi.org/10.1002/cne.22800 CrossRefGoogle Scholar
  6. 6.
    Zhu CL, Ji Y, Lee EJ, Grzywacz NM (2013) Spatiotemporal pattern of rod degeneration in the S334ter-line-3 rat model of retinitis pigmentosa. Cell Tissue Res 351(1):29–40.  https://doi.org/10.1007/s00441-012-1522-5 CrossRefGoogle Scholar
  7. 7.
    Hood DC, Lazow MA, Locke KG, Greenstein VC, Birch DG (2011) The transition zone between healthy and diseased retina in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 52(1):101–108.  https://doi.org/10.1167/iovs.10-5799 CrossRefGoogle Scholar
  8. 8.
    Jacobson SG, Aleman TS, Sumaroka A, Cideciyan AV, Roman AJ, Windsor EA, Schwartz SB, Rehm HL, Kimberling WJ (2009) Disease boundaries in the retina of patients with Usher syndrome caused by MYO7A gene mutations. Invest Ophthalmol Vis Sci 50(4):1886–1894.  https://doi.org/10.1167/iovs.08-3122 CrossRefGoogle Scholar
  9. 9.
    Lenassi E, Troeger E, Wilke R, Hawlina M (2012) Correlation between macular morphology and sensitivity in patients with retinitis pigmentosa and hyperautofluorescent ring. Invest Ophthalmol Vis Sci 53(1):47–52.  https://doi.org/10.1167/iovs.11-8048 CrossRefGoogle Scholar
  10. 10.
    Birch DG, Locke KG, Felius J, Klein M, Wheaton DK, Hoffman DR, Hood DC (2015) Rates of decline in regions of the visual field defined by frequency-domain optical coherence tomography in patients with RPGR-mediated X-linked retinitis pigmentosa. Ophthalmology 122(4):833–839.  https://doi.org/10.1016/j.ophtha.2014.11.005 CrossRefGoogle Scholar
  11. 11.
    Liang J, Williams DR, Miller DT (1997) Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A Opt Image Sci Vis 14(11):2884–2892CrossRefGoogle Scholar
  12. 12.
    Liu T, Jung H, Liu J, Droettboom M, Tam J (2017) Noninvasive near infrared autofluorescence imaging of retinal pigment epithelial cells in the human retina using adaptive optics. Biomed Opt Express 8(10):4348–4360.  https://doi.org/10.1364/BOE.8.004348 CrossRefGoogle Scholar
  13. 13.
    Choi SS, Doble N, Hardy JL, Jones SM, Keltner JL, Olivier SS, Werner JS (2006) In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function. Invest Ophthalmol Vis Sci 47(5):2080–2092.  https://doi.org/10.1167/iovs.05-0997 CrossRefGoogle Scholar
  14. 14.
    Duncan JL, Zhang Y, Gandhi J, Nakanishi C, Othman M, Branham KE, Swaroop A, Roorda A (2007) High-resolution imaging with adaptive optics in patients with inherited retinal degeneration. Invest Ophthalmol Vis Sci 48(7):3283–3291.  https://doi.org/10.1167/iovs.06-1422 CrossRefGoogle Scholar
  15. 15.
    Makiyama Y, Ooto S, Hangai M, Takayama K, Uji A, Oishi A, Ogino K, Nakagawa S, Yoshimura N (2013) Macular cone abnormalities in retinitis pigmentosa with preserved central vision using adaptive optics scanning laser ophthalmoscopy. PLoS One 8(11):e79447.  https://doi.org/10.1371/journal.pone.0079447 CrossRefGoogle Scholar
  16. 16.
    Tojo N, Nakamura T, Fuchizawa C, Oiwake T, Hayashi A (2013) Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa. Clin Ophthalmol 7:203–210.  https://doi.org/10.2147/OPTH.S39879 Google Scholar
  17. 17.
    Vincent AL, Carroll J, Fishman GA, Sauer A, Sharp D, Summerfelt P, Williams V, Dubis AM, Kohl S, Wong F (2013) Rhodopsin F45L allele does not cause autosomal dominant retinitis pigmentosa in a large Caucasian family. Transl Vis Sci Technol 2(2):4.  https://doi.org/10.1167/tvst.2.2.4 CrossRefGoogle Scholar
  18. 18.
    Park SP, Lee W, Bae EJ, Greenstein V, Sin BH, Chang S, Tsang SH (2014) Early structural anomalies observed by high-resolution imaging in two related cases of autosomal-dominant retinitis pigmentosa. Ophthalmic Surg Lasers Imaging Retina 45(5):469–473.  https://doi.org/10.3928/23258160-20140908-01 CrossRefGoogle Scholar
  19. 19.
    Menghini M, Lujan BJ, Zayit-Soudry S, Syed R, Porco TC, Bayabo K, Carroll J, Roorda A, Duncan JL (2015) Correlation of outer nuclear layer thickness with cone density values in patients with retinitis pigmentosa and healthy subjects. Invest Ophthalmol Vis Sci 56(1):372–381.  https://doi.org/10.1167/iovs.14-15521 CrossRefGoogle Scholar
  20. 20.
    Ziccardi L, Giannini D, Lombardo G, Serrao S, Dell'Omo R, Nicoletti A, Bertelli M, Lombardo M (2015) Multimodal approach to monitoring and investigating cone structure and function in an inherited macular dystrophy. Am J Ophthalmol 160(2):301–312 e306.  https://doi.org/10.1016/j.ajo.2015.04.024 CrossRefGoogle Scholar
  21. 21.
    Georgiou M, Kalitzeos A, Patterson EJ, Dubra A, Carroll J, Michaelides M (2017) Adaptive optics imaging of inherited retinal diseases. Br J Ophthalmol.  https://doi.org/10.1136/bjophthalmol-2017-311328
  22. 22.
    Momozawa Y, Akiyama M, Kamatani Y, Arakawa S, Yasuda M, Yoshida S, Oshima Y, Mori R, Tanaka K, Mori K, Inoue S, Terasaki H, Yasuma T, Honda S, Miki A, Inoue M, Fujisawa K, Takahashi K, Yasukawa T, Yanagi Y, Kadonosono K, Sonoda KH, Ishibashi T, Takahashi A, Kubo M (2016) Low-frequency coding variants in CETP and CFB are associated with susceptibility of exudative age-related macular degeneration in the Japanese population. Hum Mol Genet 25(22):5027–5034.  https://doi.org/10.1093/hmg/ddw335 Google Scholar
  23. 23.
    Ikeda Y, Hisatomi T, Yoshida N, Notomi S, Murakami Y, Enaida H, Ishibashi T (2012) The clinical efficacy of a topical dorzolamide in the management of cystoid macular edema in patients with retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 250(6):809–814.  https://doi.org/10.1007/s00417-011-1904-5 CrossRefGoogle Scholar
  24. 24.
    Ikeda Y, Yoshida N, Notomi S, Murakami Y, Hisatomi T, Enaida H, Ishibashi T (2013) Therapeutic effect of prolonged treatment with topical dorzolamide for cystoid macular oedema in patients with retinitis pigmentosa. Br J Ophthalmol 97(9):1187–1191.  https://doi.org/10.1136/bjophthalmol-2012-303005 CrossRefGoogle Scholar
  25. 25.
    Yoshida N, Ikeda Y, Murakami Y, Nakatake S, Fujiwara K, Notomi S, Hisatomi T, Ishibashi T (2015) Factors affecting visual acuity after cataract surgery in patients with retinitis pigmentosa. Ophthalmology 122(5):903–908.  https://doi.org/10.1016/j.ophtha.2014.12.003 CrossRefGoogle Scholar
  26. 26.
    Murakami T, Nishijima K, Akagi T, Uji A, Horii T, Ueda-Arakawa N, Muraoka Y, Yoshimura N (2012) Optical coherence tomographic reflectivity of photoreceptors beneath cystoid spaces in diabetic macular edema. Invest Ophthalmol Vis Sci 53(3):1506–1511.  https://doi.org/10.1167/iovs.11-9231 CrossRefGoogle Scholar
  27. 27.
    Sun LW, Johnson RD, Langlo CS, Cooper RF, Razeen MM, Russillo MC, Dubra A, Connor TB Jr, Han DP, Pennesi ME, Kay CN, Weinberg DV, Stepien KE, Carroll J (2016) Assessing photoreceptor structure in retinitis pigmentosa and Usher syndrome. Invest Ophthalmol Vis Sci 57(6):2428–2442.  https://doi.org/10.1167/iovs.15-18246 CrossRefGoogle Scholar
  28. 28.
    Uji A, Hangai M, Ooto S, Takayama K, Arakawa N, Imamura H, Nozato K, Yoshimura N (2012) The source of moving particles in parafoveal capillaries detected by adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 53(1):171–178.  https://doi.org/10.1167/iovs.11-8192 CrossRefGoogle Scholar
  29. 29.
    Murakami Y, Ikeda Y, Nakatake S, Tachibana T, Fujiwara K, Yoshida N, Notomi S, Nakao S, Hisatomi T, Miller JW, Vavvas DG, Sonoda KH, Ishibashi T (2015) Necrotic enlargement of cone photoreceptor cells and the release of high-mobility group box-1 in retinitis pigmentosa. Cell Death Discov 1:15058.  https://doi.org/10.1038/cddiscovery.2015.58 CrossRefGoogle Scholar
  30. 30.
    Bennett AG, Rudnicka AR, Edgar DF (1994) Improvements on Littmann’s method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalmol 232(6):361–367CrossRefGoogle Scholar
  31. 31.
    Li KY, Roorda A (2007) Automated identification of cone photoreceptors in adaptive optics retinal images. J Opt Soc Am A Opt Image Sci Vis 24(5):1358–1363CrossRefGoogle Scholar
  32. 32.
    Baraas RC, Carroll J, Gunther KL, Chung M, Williams DR, Foster DH, Neitz M (2007) Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency. J Opt Soc Am A Opt Image Sci Vis 24(5):1438–1447CrossRefGoogle Scholar
  33. 33.
    Garrioch R, Langlo C, Dubis AM, Cooper RF, Dubra A, Carroll J (2012) Repeatability of in vivo parafoveal cone density and spacing measurements. Optom Vis Sci 89(5):632–643.  https://doi.org/10.1097/OPX.0b013e3182540562 CrossRefGoogle Scholar
  34. 34.
    Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography. J Comp Neurol 292(4):497–523.  https://doi.org/10.1002/cne.902920402 CrossRefGoogle Scholar
  35. 35.
    Wells-Gray EM, Choi SS, Bries A, Doble N (2016) Variation in rod and cone density from the fovea to the mid-periphery in healthy human retinas using adaptive optics scanning laser ophthalmoscopy. Eye (Lond) 30(8):1135–1143.  https://doi.org/10.1038/eye.2016.107 CrossRefGoogle Scholar
  36. 36.
    Pyo Park S, Hwan Hong I, Tsang SH, Chang S (2013) Cellular imaging demonstrates genetic mosaicism in heterozygous carriers of an X-linked ciliopathy gene. Eur J Hum Genet 21(11):1240–1248.  https://doi.org/10.1038/ejhg.2013.21 CrossRefGoogle Scholar
  37. 37.
    Acton JH, Bartlett NS, Greenstein VC (2011) Comparing the Nidek MP-1 and Humphrey field analyzer in normal subjects. Optom Vis Sci 88(11):1288–1297.  https://doi.org/10.1097/OPX.0b013e31822b3746 CrossRefGoogle Scholar
  38. 38.
    Ratnam K, Carroll J, Porco TC, Duncan JL, Roorda A (2013) Relationship between foveal cone structure and clinical measures of visual function in patients with inherited retinal degenerations. Invest Ophthalmol Vis Sci 54(8):5836–5847.  https://doi.org/10.1167/iovs.13-12557 CrossRefGoogle Scholar
  39. 39.
    Gupta N, Brown KE, Milam AH (2003) Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res 76(4):463–471.  https://doi.org/10.1016/s0014-4835(02)00332-9 CrossRefGoogle Scholar
  40. 40.
    Tanna P, Kasilian M, Strauss R, Tee J, Kalitzeos A, Tarima S, Visotcky A, Dubra A, Carroll J, Michaelides M (2017) Reliability and repeatability of cone density measurements in patients with Stargardt disease and RPGR-associated retinopathy. Invest Ophthalmol Vis Sci 58(9):3608–3615.  https://doi.org/10.1167/iovs.17-21904 CrossRefGoogle Scholar
  41. 41.
    Scoles D, Flatter JA, Cooper RF, Langlo CS, Robison S, Neitz M, Weinberg DV, Pennesi ME, Han DP, Dubra A, Carroll J (2016) Assessing photoreceptor structure associated with ellipsoid zone disruptions visualized with optical coherence tomography. Retina 36(1):91–103.  https://doi.org/10.1097/IAE.0000000000000618 CrossRefGoogle Scholar
  42. 42.
    Moon CH, Park TK, Ohn YH (2012) Association between multifocal electroretinograms, optical coherence tomography and central visual sensitivity in advanced retinitis pigmentosa. Doc Ophthalmol 125(2):113–122.  https://doi.org/10.1007/s10633-012-9342-1 CrossRefGoogle Scholar
  43. 43.
    Wen Y, Klein M, Hood DC, Birch DG (2012) Relationships among multifocal electroretinogram amplitude, visual field sensitivity, and SD-OCT receptor layer thicknesses in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 53(2):833–840.  https://doi.org/10.1167/iovs.11-8410 CrossRefGoogle Scholar
  44. 44.
    Ramachandran R, Zhou L, Locke KG, Birch DG, Hood DC (2013) A comparison of methods for tracking progression in X-linked retinitis pigmentosa using frequency domain OCT. Transl Vis Sci Technol 2(7):5.  https://doi.org/10.1167/tvst.2.7.5 CrossRefGoogle Scholar
  45. 45.
    Hariri AH, Zhang HY, Ho A, Francis P, Weleber RG, Birch DG, Ferris FL III, Sadda SR, Trial of oral valproic acid for retinitis pigmentosa G (2016) Quantification of ellipsoid zone changes in retinitis pigmentosa using en face spectral domain-optical coherence tomography. JAMA Ophthalmol 134(6):628–635.  https://doi.org/10.1001/jamaophthalmol.2016.0502 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shunji Nakatake
    • 1
  • Yusuke Murakami
    • 1
    Email author
  • Jun Funatsu
    • 1
  • Yoshito Koyanagi
    • 1
  • Masato Akiyama
    • 1
  • Yukihide Momozawa
    • 2
  • Tatsuro Ishibashi
    • 1
  • Koh-Hei Sonoda
    • 1
  • Yasuhiro Ikeda
    • 1
  1. 1.Department of Ophthalmology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  2. 2.Laboratory for Genotyping Development, RIKEN Center for Integrative Medical SciencesYokohamaJapan

Personalised recommendations