Advertisement

Investigating retinal toxicity of a lutein-based dye in a model of isolated and perfused bovine retina

  • Sebastian MuellerEmail author
  • Carlo Krupp
  • Sven Schnichels
  • Johanna Hofmann
  • Martin Spitzer
  • Karl Ulrich Bartz-Schmidt
  • Peter Szurman
  • Kai Januschowski
Basic Science
  • 16 Downloads

Abstract

Purpose

Retidyne™ is a new lutein-based dye for internal limiting membrane staining. It uses the intrinsic staining characteristics of lutein which is already known to act as an antioxidant and blue-light filter in the human retina. We investigated retinal tolerance to different staining times measured by the electroretinogram (ERG) of an isolated and perfused retina whole mount.

Methods

For functionality, testing bovine retinas were prepared and perfused with an oxygen saturated standard solution and the ERG was recorded until stable b-wave amplitudes were reached. Then the perfusion was stopped and Retidyne™ was applied directly onto the retinal surface for exposure times of 60 or 120 s. After restarting the perfusion with standard solution, the ERG amplitudes were monitored for 75 min. To investigate the effects on photoreceptor function alone, 1 mM asparate was added to block b-waves.

Results

For an exposure time of 60 s amplitudes of a- and b-waves remained stable throughout the experiment. Exposure times of 120 s caused an initial drop of amplitudes that reached statistical significance only for a-waves (a, − 21%, p = 0.047; b, − 14%, p = 0.052). This effect was only seen during the first minutes of the washout and the ERG recovered completely.

Conclusions

In the model of isolated and perfused bovine retina, Retidyne™ showed a good safety profile for common intraoperatively used staining times. An initial toxic effect regarding the transient drop of amplitudes cannot be ruled out but the effect might also be explained by the partial blockage of the flashlight due to a more intense staining effect at the beginning of the washout.

Keywords

Lutein Vital dye Internal limiting membrane staining Peeling surgery Electroretinogram Biocompatibility 

Notes

Compliance with ethical standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Luke J, Ludeke I, Acksteiner A, Nassar K, Hoerauf H, Grisanti S, Luke M (2013) Morphological and functional outcome after brilliant blue G-assisted macular hole surgery. Ophthalmologica Journal international d’ophtalmologie International journal of ophthalmology Zeitschrift fur Augenheilkunde 230(2):81–86.  https://doi.org/10.1159/000351658 CrossRefGoogle Scholar
  2. 2.
    Vote BJ, Russell MK, Joondeph BC (2004) Trypan blue-assisted vitrectomy. Retina (Philadelphia, Pa) 24(5):736–738CrossRefGoogle Scholar
  3. 3.
    Wolf S, Reichel MB, Wiedemann P, Schnurrbusch UE (2003) Clinical findings in macular hole surgery with indocyanine green-assisted peeling of the internal limiting membrane. Graefes Arch Clin Exp Ophthalmol 241(7):589–592.  https://doi.org/10.1007/s00417-003-0673-1 CrossRefGoogle Scholar
  4. 4.
    Stalmans P, Van Aken EH, Veckeneer M, Feron EJ, Stalmans I (2002) Toxic effect of indocyanine green on retinal pigment epithelium related to osmotic effects of the solvent. Am J Ophthalmol 134(2):282–285 doi: S000293940201468X [pii]CrossRefGoogle Scholar
  5. 5.
    Lee JE, Yoon TJ, Oum BS, Lee JS, Choi HY (2003) Toxicity of indocyanine green injected into the subretinal space: subretinal toxicity of indocyanine green. Retina (Philadelphia, Pa) 23(5):675–681CrossRefGoogle Scholar
  6. 6.
    Cheng SN, Yang TC, Ho JD, Hwang JF, Cheng CK (2005) Ocular toxicity of intravitreal indocyanine green. J Ocul Pharmacol Ther 21(1):85–93.  https://doi.org/10.1089/jop.2005.21.85 CrossRefGoogle Scholar
  7. 7.
    Enaida H, Sakamoto T, Hisatomi T, Goto Y, Ishibashi T (2002) Morphological and functional damage of the retina caused by intravitreous indocyanine green in rat eyes. Graefes Arch Clin Exp Ophthalmol 240(3):209–213.  https://doi.org/10.1007/s00417-002-0433-7 CrossRefGoogle Scholar
  8. 8.
    von Jagow B, Hoing A, Gandorfer A, Rudolph G, Kohnen T, Kampik A, Haritoglou C (2009) Functional outcome of indocyanine green-assisted macular surgery: 7-year follow-up. Retina (Philadelphia, Pa) 29(9):1249–1256.  https://doi.org/10.1097/IAE.0b013e3181a91dd3 CrossRefGoogle Scholar
  9. 9.
    Narayanan R, Kenney MC, Kamjoo S, Trinh TH, Seigel GM, Resende GP, Kuppermann BD (2005) Toxicity of indocyanine green (ICG) in combination with light on retinal pigment epithelial cells and neurosensory retinal cells. Curr Eye Res 30(6):471–478.  https://doi.org/10.1080/02713680590959312 CrossRefGoogle Scholar
  10. 10.
    Kernt M, Hirneiss C, Wolf A, Liegl R, Rueping J, Neubauer A, Alge C, Ulbig M, Gandorfer A, Kampik A, Haritoglou C (2012) Indocyanine green increases light-induced oxidative stress, senescence, and matrix metalloproteinases 1 and 3 in human RPE cells. Acta Ophthalmol 90(6):571–579.  https://doi.org/10.1111/j.1755-3768.2010.01961.x CrossRefGoogle Scholar
  11. 11.
    Bone RA, Landrum JT, Tarsis SL (1985) Preliminary identification of the human macular pigment. Vis Res 25(11):1531–1535CrossRefGoogle Scholar
  12. 12.
    Nolan JM, Stack J, Mellerio J, Godhinio M, O’Donovan O, Neelam K, Beatty S (2006) Monthly consistency of macular pigment optical density and serum concentrations of lutein and zeaxanthin. Curr Eye Res 31(2):199–213.  https://doi.org/10.1080/02713680500514677 CrossRefGoogle Scholar
  13. 13.
    Liu R, Wang T, Zhang B, Qin L, Wu C, Li Q, Ma L (2015) Lutein and zeaxanthin supplementation and association with visual function in age-related macular degeneration. Invest Ophthalmol Vis Sci 56(1):252–258.  https://doi.org/10.1167/iovs.14-15553 CrossRefGoogle Scholar
  14. 14.
    Yu CC, Nandrot EF, Dun Y, Finnemann SC (2012) Dietary antioxidants prevent age-related retinal pigment epithelium actin damage and blindness in mice lacking alphavbeta5 integrin. Free Radic Biol Med 52(3):660–670.  https://doi.org/10.1016/j.freeradbiomed.2011.11.021 CrossRefGoogle Scholar
  15. 15.
    Kim SR, Nakanishi K, Itagaki Y, Sparrow JR (2006) Photooxidation of A2-PE, a photoreceptor outer segment fluorophore, and protection by lutein and zeaxanthin. Exp Eye Res 82(5):828–839.  https://doi.org/10.1016/j.exer.2005.10.004 CrossRefGoogle Scholar
  16. 16.
    Kijlstra A, Tian Y, Kelly ER, Berendschot TT (2012) Lutein: more than just a filter for blue light. Prog Retin Eye Res 31(4):303–315.  https://doi.org/10.1016/j.preteyeres.2012.03.002 CrossRefGoogle Scholar
  17. 17.
    Badaro E, Furlani B, Prazeres J, Maia M, Lima AA, Souza-Martins D, Muccioli C, Lucatto LF, Belfort R Jr (2014) Soluble lutein in combination with brilliant blue as a new dye for chromovitrectomy. Graefes Arch Clin Exp Ophthalmol 252(7):1071–1078.  https://doi.org/10.1007/s00417-013-2539-5 CrossRefGoogle Scholar
  18. 18.
    Luke M, Weiergraber M, Brand C, Siapich SA, Banat M, Hescheler J, Luke C, Schneider T (2005) The isolated perfused bovine retina--a sensitive tool for pharmacological research on retinal function. Brain Res Brain Res Protoc 16(1–3):27–36.  https://doi.org/10.1016/j.brainresprot.2005.09.001 CrossRefGoogle Scholar
  19. 19.
    Sickel W (1966) The isolated retina maintained in a circulating medium. Combined optical and electrical investigations of metabolic aspects of the generation of the electroretinogram. In: Clinical electroretinography. Pergamon Press, Oxford, pp 115–124Google Scholar
  20. 20.
    Kadonosono K, Itoh N, Uchio E, Nakamura S, Ohno S (2000) Staining of internal limiting membrane in macular hole surgery. Arch Ophthalmol 118(8):1116–1118CrossRefGoogle Scholar
  21. 21.
    Wollensak G (2008) Biomechanical changes of the internal limiting membrane after indocyanine green staining. Dev Ophthalmol 42:82–90.  https://doi.org/10.1159/000138975 CrossRefGoogle Scholar
  22. 22.
    Rodrigues EB, Meyer CH (2008) Meta-analysis of chromovitrectomy with indocyanine green in macular hole surgery. Ophthalmologica Journal international d’ophtalmologie International journal of ophthalmology Zeitschrift fur Augenheilkunde 222(2):123–129.  https://doi.org/10.1159/000112630 CrossRefGoogle Scholar
  23. 23.
    Wu Y, Zhu W, Xu D, Li YH, Ba J, Zhang XL, Wang F, Yu J (2012) Indocyanine green-assisted internal limiting membrane peeling in macular hole surgery: a meta-analysis. PLoS One 7(11):e48405.  https://doi.org/10.1371/journal.pone.0048405 CrossRefGoogle Scholar
  24. 24.
    Thaler S, Schuttauf F, Haritoglou C (2009) Biocompatibility of dyes for vitreoretinal surgery. Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft 106(1):11–15.  https://doi.org/10.1007/s00347-008-1854-4 CrossRefGoogle Scholar
  25. 25.
    Tura A, Alt A, Haritoglou C, Meyer CH, Schneider T, Grisanti S, Luke J, Luke M, International Chromovitrectomy C (2014) Testing the effects of the dye acid violet-17 on retinal function for an intraocular application in vitreo-retinal surgery. Graefes Arch Clin Exp Ophthalmol 252(12):1927–1937.  https://doi.org/10.1007/s00417-014-2761-9 CrossRefGoogle Scholar
  26. 26.
    Gerding H (2017) Intraocular use of acid violet 17 at a concentration of 1.5 mg/ml is not safe. Graefes Arch Clin Exp Ophthalmol 255(3):627–628.  https://doi.org/10.1007/s00417-016-3574-9 CrossRefGoogle Scholar
  27. 27.
    Gerding H (2016) Acid violet 17: a new dye for chromovitrectomy? Klin Monatsbl Augenheilkd 233(4):460–464.  https://doi.org/10.1055/s-0041-111823 CrossRefGoogle Scholar
  28. 28.
    Hurst J, Schnichels S, Spitzer MS, Bartz-Schmidt KU, Farecki ML, Szurman P, Januschowski K (2017) Negative effects of acid violet-17 and MBB dual in vitro on different ocular cell lines. Curr Eye Res 42:1–6.  https://doi.org/10.1080/02713683.2017.1285942 CrossRefGoogle Scholar
  29. 29.
    Furlani BA, Barroso L, Sousa-Martins D, Maia M, Moraes-Filho MN, Badaro E, Portella R, Lima-Filho AA, Rodrigues EB, Belfort R Jr (2014) Lutein and zeaxanthin toxicity with and without brilliant blue in rabbits. J Ocul Pharmacol Ther 30(7):559–566.  https://doi.org/10.1089/jop.2013.0171 CrossRefGoogle Scholar
  30. 30.
    Casaroli-Marano RP, Sousa-Martins D, Martinez-Conesa EM, Badaro E, Nunes RP, Lima-Filho AA, Rodrigues EB, Belfort R Jr, Maia M (2015) Dye solutions based on lutein and zeaxanthin: in vitro and in vivo analysis of ocular toxicity profiles. Curr Eye Res 40(7):707–718.  https://doi.org/10.3109/02713683.2014.952831 CrossRefGoogle Scholar
  31. 31.
    Henrich PB, Haritoglou C, Meyer P, Ferreira PR, Schotzau A, Katamay R, Josifova T, Schneider U, Flammer J, Priglinger S (2010) Anatomical and functional outcome in Brilliant Blue G assisted chromovitrectomy. Acta Ophthalmol 88(5):588–593.  https://doi.org/10.1111/j.1755-3768.2008.01477.x CrossRefGoogle Scholar
  32. 32.
    Hoing A, Remy M, Dirisamer M, Priglinger S, Schonfeld CL, Kampik A, Haritoglou C (2011) An in-vivo evaluation of Brilliant Blue G in macular surgery. Klin Monatsbl Augenheilkd 228(8):724–728.  https://doi.org/10.1055/s-0031-1273351 [doi]
  33. 33.
    Mansoor S, Sharma A, Caceres-Del-Carpio J, Zacharias LC, Patil AJ, Gupta N, Limb GA, Kenney MC, Kuppermann BD (2015) Effects of light on retinal pigment epithelial cells, neurosensory retinal cells and Muller cells treated with Brilliant Blue G. Clin Exp Ophthalmol 43(9):820–829.  https://doi.org/10.1111/ceo.12568 CrossRefGoogle Scholar
  34. 34.
    van den Biesen PR, Berenschot T, Verdaasdonk RM, van Weelden H, van Norren D (2000) Endoillumination during vitrectomy and phototoxicity thresholds. Br J Ophthalmol 84(12):1372–1375CrossRefGoogle Scholar
  35. 35.
    Sundelin SP, Nilsson SE (2001) Lipofuscin-formation in retinal pigment epithelial cells is reduced by antioxidants. Free Radic Biol Med 31(2):217–225CrossRefGoogle Scholar
  36. 36.
    Kwok AK, Lai TY, Yeung CK, Yeung YS, Li WW, Chiang SW (2005) The effects of indocyanine green and endoillumination on rabbit retina: an electroretinographic and histological study. Br J Ophthalmol 89(7):897–900.  https://doi.org/10.1136/bjo.2004.061093 CrossRefGoogle Scholar
  37. 37.
    Glickman RD (2002) Phototoxicity to the retina: mechanisms of damage. Int J Toxicol 21(6):473–490.  https://doi.org/10.1080/10915810290169909 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for OphthalmologyUniversity of TuebingenTuebingenGermany
  2. 2.Eye Hospital, Knappschaftsklinikum SaarSulzbachGermany

Personalised recommendations