Is primary open-angle glaucoma an ocular manifestation of systemic disease?

  • Stephanie Wey
  • Sarah Amanullah
  • George L. Spaeth
  • Melih Ustaoglu
  • Kamran Rahmatnejad
  • L. Jay KatzEmail author
Review Article


Primary open-angle glaucoma is currently characterized by a pattern of progressive retinal ganglion cell loss that stems from a complex underlying pathophysiology that remains poorly elucidated. The roles of blood flow and intraocular pressure (IOP) in glaucoma pathogenesis have been extensively studied. Further, it has been established that lowering IOP can slow the progression of glaucoma. In addition, a number of influential factors have emerged and gained momentum over the years. Increasing evidence implicates the contributions of low cerebrospinal fluid pressure, autoimmunity, neurodegeneration, and impaired autoregulation towards glaucoma pathophysiology. We aggregate and explore these different camps of thought that have garnered attention over the last few decades, and, in doing so, aim to challenge the long-standing view of glaucoma as a primary disease of the eye. A shift in our perspective towards understanding glaucoma as an ocular manifestation of systemic dysregulation may lead ultimately to better clinical management of the disease.


Glaucoma Vascular autoregulation Blood pressure Neurodegeneration Autoimmunity Systemic dysregulation 


Compliance with ethical standards

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Duke-Elder S, Jay B (1969) Predisposing factors. In: Duke-Elder S (ed) System of ophthalmology, vol XI: diseases of the lens and vitreous; glaucoma and hypotony. C.V. Mosby Company, St. Louis, p 404–412Google Scholar
  2. 2.
    Sommer A, Tielsch JM, Katz J et al (1991) Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. Arch Ophthalmol 109:1090. CrossRefGoogle Scholar
  3. 3.
    Leske MC, Jeijl A, Hussein M et al (2003) Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 121:48–56CrossRefGoogle Scholar
  4. 4.
    Wiggs JL, Pasquale LR (2017) Genetics of glaucoma. Hum Mol Genet 26:R21–R27. CrossRefGoogle Scholar
  5. 5.
    Khawaja AP, Viswanathan AC (2018) Are we ready for genetic testing for primary open-angle glaucoma? Eye 32:877–883.
  6. 6.
    Zhao D, Cho J, Kim MH, Guallar E (2014) The association of blood pressure and primary open-angle glaucoma: a meta-analysis. Am J Ophthalmol 158:615–627.e9. CrossRefGoogle Scholar
  7. 7.
    Bae HW, Lee N, Lee HS et al (2014) Systemic hypertension as a risk factor for open-angle glaucoma: a meta-analysis of population-based studies. PLoS One 9:e108226.
  8. 8.
    Fuchsjäger-Mayrl G, Wally B, Georgopoulos M et al (2004) Ocular blood flow and systemic blood pressure in patients with primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 45:834–839. CrossRefGoogle Scholar
  9. 9.
    Tielsch J, Katz J, Sommer A et al (1995) Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol 113:216–221CrossRefGoogle Scholar
  10. 10.
    Costa V, Arcieri E, Harris A (2009) Blood pressure and glaucoma. Br J Ophthalmol 93:1276–1282. CrossRefGoogle Scholar
  11. 11.
    Choi J, Kook MS (2015) Systemic and ocular hemodynamic risk factors in glaucoma. Biomed Res Int 2015:141905
  12. 12.
    Leske MC, Heijl A, Hyman L et al (2007) Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 114:1965–1972. CrossRefGoogle Scholar
  13. 13.
    Okumura Y, Yuki K, Tsubota K (2012) Low diastolic blood pressure is associated with the progression of normal-tension glaucoma. Ophthalmologica 228:36–41. CrossRefGoogle Scholar
  14. 14.
    Kaiser HJ, Flammer J, Graf T, Stümpfig D (1993) Systemic blood pressure in glaucoma patients. Graefes Arch Clin Exp Ophthalmol 231:677–680CrossRefGoogle Scholar
  15. 15.
    Meyer JH, Brandi-Dohrn J, Funk J (1996) Twenty four hour blood pressure monitoring in normal tension glaucoma. Br J Ophthalmol 80:864–867CrossRefGoogle Scholar
  16. 16.
    Topouzis F, Coleman AL, Harris A et al (2006) Association of blood pressure status with the optic disk structure in non-glaucoma subjects: the Thessaloniki eye study. Am J Ophthalmol 142:60–67.e1. CrossRefGoogle Scholar
  17. 17.
    Harris A, Topouzis F, Wilson MR et al (2013) Association of the optic disc structure with the use of antihypertensive medications: the Thessaloniki eye study. J Glaucoma 22:526–531. CrossRefGoogle Scholar
  18. 18.
    Bonomi L, Marchini G, Marraffa M et al (2000) Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt study. Ophthalmology 107:1287–1293CrossRefGoogle Scholar
  19. 19.
    Sommer A (1996) Glaucoma risk factors observed in the Baltimore Eye Survey. Curr Opin Ophthalmol 7:93–98. CrossRefGoogle Scholar
  20. 20.
    Leske MC, Connell AMS, Wu S-Y et al (1995) Risk factors for open-angle glaucoma: the Barbados eye study. Arch Ophthalmol 113:918–924CrossRefGoogle Scholar
  21. 21.
    Memarzadeh F, Ying-Lai M, Chung J et al (2010) Blood pressure, perfusion pressure, and open-angle glaucoma: the Los Angeles Latino eye study. Invest Ophthalmol Vis Sci 51:2872–2877. CrossRefGoogle Scholar
  22. 22.
    Wang L, Cull GA, Fortune B (2015) Optic nerve head blood flow response to reduced ocular perfusion pressure by alteration of either the blood pressure or intraocular pressure. Curr Eye Res Res 40:359–367. CrossRefGoogle Scholar
  23. 23.
    Polska E, Simader C, Weigert G et al (2007) Regulation of choroidal blood flow during combined changes in intraocular pressure and arterial blood pressure. Invest Ophthalmol Vis Sci 48:3768–3774. CrossRefGoogle Scholar
  24. 24.
    Ramdas WD, Wolfs RCW, Hofman A et al (2011) Ocular perfusion pressure and the incidence of glaucoma : real effect or artifact?: the Rotterdam study. Invest Ophthalmol Vis Sci 52:6875–6881. CrossRefGoogle Scholar
  25. 25.
    Graham SL, Drance SM, Wijsman K et al (1995) Ambulatory blood pressure monitoring in glaucoma: the nocturnal dip. Ophthalmology 102:61–69. CrossRefGoogle Scholar
  26. 26.
    Hayreh SS, Zimmerman MB, Podhajsky P, Alward WLM (1994) Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol 117:603–624CrossRefGoogle Scholar
  27. 27.
    Collignon N, Dewe W, Guillaume S, Collignon-Brach J (1998) Ambulatory blood pressure monitoring in glaucoma patients. The nocturnal systolic dip and its relationship with disease progression. Int Ophthalmol 22:19–25CrossRefGoogle Scholar
  28. 28.
    Hayreh SS, Podhajsky P, Zimmerman MB (1999) Beta-blocker eyedrops and nocturnal arterial hypotension. Am J Ophthalmol 128:301–309. CrossRefGoogle Scholar
  29. 29.
    Bowe A, Grünig M, Schubert J et al (2015) Circadian variation in arterial blood pressure and glaucomatous optic neuropathy—a systematic review and meta-analysis. Am J Hypertens 28:1077–1082. CrossRefGoogle Scholar
  30. 30.
    Lee J, Choi J, Jeong D et al (2015) Relationship between daytime variability of blood pressure or ocular perfusion pressure and glaucomatous visual field progression. Am J Ophthalmol 160:522–537.e1. CrossRefGoogle Scholar
  31. 31.
    Choi J, Jeong J, Cho HS, Kook MS (2006) Effect of nocturnal blood pressure reduction on circadian fluctuation of mean ocular perfusion pressure: a risk factor for normal tension glaucoma. Invest Ophthalmol Vis Sci 47:831–836. CrossRefGoogle Scholar
  32. 32.
    Friedlander AH, Graves LL, Chang TI et al (2018) Prevalence of primary open-angle glaucoma among patients with obstructive sleep apnea. Oral Surg Oral Med Oral Pathol Oral Radiol 126:226–230.
  33. 33.
    Zhao D, Cho J, Kim MH et al (2014) Diabetes, glucose metabolism, and glaucoma: the 2005-2008 National Health and Nutrition Examination Survey. PLoS One 9:1–7. Google Scholar
  34. 34.
    Fındık H, Çeliker M, Aslan MG et al (2018) The relation between retrobulbar blood flow and posterior ocular changes measured using spectral-domain optical coherence tomography in patients with obstructive sleep apnea syndrome. Int Ophthalmol.
  35. 35.
    Maleškić S, Kusturica J, Gušić E et al (2017) Metformin use associated with protective effects for ocular complications in patients with type 2 diabetes—observational study. Acta Med Acad 46:116–123. Google Scholar
  36. 36.
    Lin H-C, Stein JD, Nan B et al (2015) Association of geroprotective effects of metformin and risk of open-angle glaucoma in persons with diabetes mellitus. JAMA Ophthalmol 133:915–923CrossRefGoogle Scholar
  37. 37.
    Talwar N, Musch DC, Stein JD (2017) Association of daily dosage and type of statin agent with risk of open-angle glaucoma. JAMA Ophthalmol 135:263–267. CrossRefGoogle Scholar
  38. 38.
    Whelton PK, Carey RM, Aronow WS et al (2017) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 71:e127–e248.
  39. 39.
    Galambos P, Vafiadis J, Vilchez SE et al (2006) Compromised autoregulatory control of ocular hemodynamics in glaucoma patients after postural change. Ophthalmology 113:1832–1836. CrossRefGoogle Scholar
  40. 40.
    Pournaras CJ, Riva CE, Bresson-Durmont H et al (2004) Regulation of optic nerve head blood flow in normal tension glaucoma patients. Eur J Ophthalmol 14:226–235CrossRefGoogle Scholar
  41. 41.
    Prada D, Harris A, Guidoboni G et al (2016) Autoregulation and neurovascular coupling in the optic nerve head. Surv Ophthalmol 61:164–186. CrossRefGoogle Scholar
  42. 42.
    Feke GT, Pasquale LR (2008) Retinal blood flow response to posture change in glaucoma patients compared with healthy subjects. Ophthalmology 115:246–252. CrossRefGoogle Scholar
  43. 43.
    Luksch A, Polska E, Imhof A et al (2003) Role of NO in choroidal blood flow regulation during isometric exercise in healthy humans. Investig Opthalmol Vis Sci 44:734. CrossRefGoogle Scholar
  44. 44.
    Fuchsjäger-Mayrl G, Luksch A, Malec M et al (2003) Role of endothelin-1 in choroidal blood flow regulation during isometric exercise in healthy humans. Investig Opthalmol Vis Sci 44:728–733. CrossRefGoogle Scholar
  45. 45.
    Polak K, Luksch A, Berisha F et al (2007) Altered nitric oxide system in patients with open-angle glaucoma. Arch Ophthalmol 125:494–498. CrossRefGoogle Scholar
  46. 46.
    Li S, Zhang A, Cao W, Sun X (2016) Elevated plasma endothelin-1 levels in normal tension glaucoma and primary open-angle glaucoma: a meta-analysis. J Ophthalmol 2016:2678017.
  47. 47.
    Orgül S, Cioffi GA, Wilson DJ et al (1996) An endothelin-1 induced model of optic nerve ischemia in the rabbit. Invest Ophthalmol Vis Sci 37:1860–1869Google Scholar
  48. 48.
    Cioffi GA, Wang L, Fortune B et al (2004) Chronic ischemia induces regional axonal damage in experimental primate optic neuropathy. Arch Ophthalmol 122:1517–1525. CrossRefGoogle Scholar
  49. 49.
    Resch H, Karl K, Weigert G et al (2009) Effect of dual endothelin receptor blockade on ocular blood flow in patients with glaucoma and healthy subjects. Investig Opthalmol Vis Sci 50:358–363. CrossRefGoogle Scholar
  50. 50.
    Salinaro AT, Cornelius C, Koverech G et al (2014) Cellular stress response, redox status, and vitagenes in glaucoma: a systemic oxidant disorder linked to Alzheimer’s disease. Front Pharmacol 5:1–8. Google Scholar
  51. 51.
    Tanito M, Kaidzu S, Takai Y, Ohira A (2016) Association between systemic oxidative stress and visual field damage in open-angle glaucoma. Sci Rep 6:25792.
  52. 52.
    Benoist d’Azy C, Pereira B, Chiambaretta F, Dutheil F (2016) Oxidative and anti-oxidative stress markers in chronic glaucoma: a systematic review and meta-analysis. PLoS One 11:1–20. Google Scholar
  53. 53.
    Harris A, Gross J, Moore N et al (2017) The effects of antioxidants on ocular blood flow in patients with glaucoma. Acta Ophthalmol 96:e237–e241. CrossRefGoogle Scholar
  54. 54.
    Wu CM, Wu AM, Tseng VL et al (2018) Frequency of a diagnosis of glaucoma in individuals who consume coffee, tea and/or soft drinks. Br J Ophthalmol 102:1127–1133.
  55. 55.
    Kang JH, Willett WC, Rosner B et al (2016) Association of dietary nitrate intake with primary open-angle glaucoma: a prospective analysis from the Nurses’ Heath Study and Health Professionals Follow-up Study. JAMA Ophthalmol 134:294–303. CrossRefGoogle Scholar
  56. 56.
    Liu C-H, Su W-W, Shie S-S et al (2016) Association between peripheral vascular endothelial function and progression of open-angle glaucoma. Med 95:e3055. CrossRefGoogle Scholar
  57. 57.
    Su W-W, Cheng S-T, Ho W-J et al (2008) Glaucoma is associated with peripheral vascular endothelial dysfunction. Ophthalmology 115:1173–1178.e1. CrossRefGoogle Scholar
  58. 58.
    Henry E, Newby DE, Webb DJ et al (2006) Altered endothelin-1 vasoreactivity in patients with untreated normal-pressure glaucoma. Invest Ophthalmol Vis Sci 47:2528–2532. CrossRefGoogle Scholar
  59. 59.
    Flammer J, Mozaffarieh M (2008) Autoregulation, a balancing act between supply and demand. Can J Ophthalmol 43:317–321. CrossRefGoogle Scholar
  60. 60.
    Konieczka K, Choi HJ, Koch S et al (2017) Relationship between normal tension glaucoma and Flammer syndrome. EPMA J 8:111–117. CrossRefGoogle Scholar
  61. 61.
    Berdahl JP, Allingham RR, Johnson DH (2008) Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology 115:763–768. CrossRefGoogle Scholar
  62. 62.
    Ren R, Jonas JB, Tian G et al (2010) Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology 117:259–266. CrossRefGoogle Scholar
  63. 63.
    Quigley HA, Addicks EM (1981) Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol 99:137–143. CrossRefGoogle Scholar
  64. 64.
    Jonas JB, Nangia V, Wang N et al (2013) Trans-lamina cribrosa pressure difference and open-angle glaucoma. The Central India Eye and Medical Study. PLoS One 8:e82284. CrossRefGoogle Scholar
  65. 65.
    Ren R, Zhang X, Wang N et al (2011) Cerebrospinal fluid pressure in ocular hypertension. Acta Ophthalmol 89:e142–e148. CrossRefGoogle Scholar
  66. 66.
    Jonas JB, Wang N (2013) Cerebrospinal fluid pressure and glaucoma. J Ophthalmic Vis Res 8:257–263. Google Scholar
  67. 67.
    Siaudvytyte L, Januleviciene I, Ragauskas A et al (2015) Update in intracranial pressure evaluation methods and translaminar pressure gradient role in glaucoma. Acta Ophthalmol 93:9–15. CrossRefGoogle Scholar
  68. 68.
    Berdahl JP (2013) Systemic parameters associated with cerebrospinal fluid pressure. J Glaucoma 22:17–18. CrossRefGoogle Scholar
  69. 69.
    Lai S-W, Lin C-L, Liao K-F (2017) Glaucoma correlates with increased risk of Parkinson’s disease in the elderly: a national-based cohort study in Taiwan. Curr Med Res Opin 33:1511–1516. CrossRefGoogle Scholar
  70. 70.
    Su CW, Lin CC, Kao CH, Chen HY (2016) Association between glaucoma and the risk of dementia. Med 95:1–5. CrossRefGoogle Scholar
  71. 71.
    Keenan TDL, Goldacre R, Goldacre MJ (2014) Associations between primary open angle glaucoma, Alzheimer’s disease and vascular dementia: record linkage study. Br J Ophthalmol 99:524–527. CrossRefGoogle Scholar
  72. 72.
    Lin IC, Wang YH, Wang TJ et al (2014) Glaucoma, Alzheimer’s disease, and Parkinson’s disease: an 8-year population-based follow-up study. PLoS One 9:e108938. CrossRefGoogle Scholar
  73. 73.
    Ou Y, Grossman DS, Lee PP, Sloan FA (2012) Glaucoma, Alzheimer’s disease and other dementia: a longitudinal analysis. Ophthalmic Epidemiol 19:285–292. CrossRefGoogle Scholar
  74. 74.
    Beach TG, Carew J, Serrano G et al (2014) Phosphorylated α-synuclein-immunoreactive retinal neuronal elements in Parkinson’s disease subjects. Neurosci Lett 571:34–38CrossRefGoogle Scholar
  75. 75.
    Hart NJ, Koronyo Y, Black KL, Koronyo-Hamaoui M (2016) Ocular indicators of Alzheimer’s: exploring disease in the retina. Acta Neuropathol 132:767–787. CrossRefGoogle Scholar
  76. 76.
    Yenice O, Onal S, Midi I et al (2008) Visual field analysis in patients with Parkinson’s disease. Parkinsonism Relat Disord 14:193–198. CrossRefGoogle Scholar
  77. 77.
    Tsironi EE, Dastiridou A, Katsanos A et al (2012) Perimetric and retinal nerve fiber layer findings in patients with Parkinson’s disease. BMC Ophthalmol 12:54. CrossRefGoogle Scholar
  78. 78.
    Nucci C, Martucci A, Martorana A et al (2011) Glaucoma progression associated with altered cerebral spinal fluid levels of amyloid beta and tau proteins. Clin Exp Ophthalmol 39:279–281. CrossRefGoogle Scholar
  79. 79.
    Gupta N, Fong J, Ang LC, Yücel YH (2008) Retinal tau pathology in human glaucomas. Can J Ophthalmol 43:53–60CrossRefGoogle Scholar
  80. 80.
    Weinreb RN, Liebmann JM, Cioffi GA et al (2018) Oral memantine for the treatment of glaucoma: design and results of 2 randomized, placebo-controlled, phase 3 studies. Ophthalmology 125:1874–1885. CrossRefGoogle Scholar
  81. 81.
    Ramirez AI, de Hoz R, Salobrar-Garcia E et al (2017) The role of microglia in retinal neurodegeneration: Alzheimer’s disease, Parkinson, and glaucoma. Front Aging Neurosci 9:214. CrossRefGoogle Scholar
  82. 82.
    Williams PA, Marsh-Armstrong N, Howell GR, Lasker/IRRF Initiative on Astrocytes and Glaucomatous Neurodegeneration Participants (2017) Neuroinflammation in glaucoma: a new opportunity. Exp Eye Res 157:20–27. CrossRefGoogle Scholar
  83. 83.
    Yuan L, Neufeld AH (2001) Activated microglia in the human glaucomatous optic nerve head. J Neurosci Res 64:523–532. CrossRefGoogle Scholar
  84. 84.
    Ciccone S, Maiani E, Bellusci G, et al (2013) Parkinson’s disease: a complex interplay of mitochondrial DNA alterations and oxidative stress. Int J Mol Sci 14:2388–2409.
  85. 85.
    Abu-Amero KK, Morales J, Bosley TM (2006) Mitochondrial abnormalities in patients with primary open-angle glaucoma. Investig Ophthalmol Vis Sci 47:2533–2541. CrossRefGoogle Scholar
  86. 86.
    Chrysostomou V, Rezania F, Trounce IA, Crowston JG (2013) Oxidative stress and mitochondrial dysfunction in glaucoma. Curr Opin Pharmacol 13:12–15. CrossRefGoogle Scholar
  87. 87.
    Williams PA, Harder JM, John SWM (2017) Glaucoma as a metabolic optic neuropathy: making the case for nicotinamide treatment in glaucoma. J Glaucoma 26:1161–1168. Google Scholar
  88. 88.
    Lascaratos G, Chau K, Zhu H et al (2015) Resistance to the most common optic neuropathy is associated with systemic mitochondrial efficiency. Neurobiol Dis 82:78–85. CrossRefGoogle Scholar
  89. 89.
    Gramlich OW, Beck S, von Thun und Hohenstein-Blaul N et al (2013) Enhanced insight into the autoimmune component of glaucoma: IgG autoantibody accumulation and pro-inflammatory conditions in human glaucomatous retina. PLoS One 8:e57557. CrossRefGoogle Scholar
  90. 90.
    Bell K, Holz A, Ludwig K et al (2017) Elevated regulatory T cell levels in glaucoma patients in comparison to healthy controls. Curr Eye Res 42:562–567. CrossRefGoogle Scholar
  91. 91.
    Xin X, Gao L, Wu T, Sun F (2013) Roles of tumor necrosis factor alpha gene polymorphisms, tumor necrosis factor alpha level in aqueous humor, and the risks of open angle glaucoma: a meta-analysis. Mol Vis 19:526–535Google Scholar
  92. 92.
    Wong MS, Huang P, Li W et al (2015) T-helper1/T-helper2 cytokine imbalance in the iris of patients with glaucoma. PLoS One 10:e0122184. CrossRefGoogle Scholar
  93. 93.
    Taurone S, Ripandelli G, Pacella E et al (2015) Potential regulatory molecules in the human trabecular meshwork of patients with glaucoma: immunohistochemical profile of a number of inflammatory cytokines. Mol Med Rep 11:1384–1390. CrossRefGoogle Scholar
  94. 94.
    Huang P, Qi Y, Xu Y-S et al (2010) Serum cytokine alteration is associated with optic neuropathy in human primary open angle glaucoma. J Glaucoma 19:324–330. Google Scholar
  95. 95.
    Borkenstein A, Faschinger C, Maier R et al (2013) Measurement of tumor necrosis factor-alpha, interleukin-6, Fas ligand, interleukin-1α, and interleukin-1β in the aqueous humor of patients with open angle glaucoma using multiplex bead analysis. Mol Vis 19:2306–2311Google Scholar
  96. 96.
    Joachim SC, Reichelt J, Berneiser S et al (2008) Sera of glaucoma patients show autoantibodies against myelin basic protein and complex autoantibody profiles against human optic nerve antigens. Graefes Arch Clin Exp Ophthalmol 246:573–580. CrossRefGoogle Scholar
  97. 97.
    Reichelt J, Joachim SC, Pfeiffer N, Grus FH (2008) Analysis of autoantibodies against human retinal antigens in sera of patients with glaucoma and ocular hypertension. Curr Eye Res 33:253–261. CrossRefGoogle Scholar
  98. 98.
    Joachim SC, Bruns K, Lackner KJ et al (2007) Antibodies to α B-crystallin, vimentin, and heat shock protein 70 in aqueous humor of patients with normal tension glaucoma and IgG antibody patterns against retinal antigen in aqueous humor. Curr Eye Res 32:501–509. CrossRefGoogle Scholar
  99. 99.
    Schmelter C, Perumal N, Funke S et al (2017) Peptides of the variable IgG domain as potential biomarker candidates in primary open-angle glaucoma (POAG). Hum Mol Genet 26:4451–4464. CrossRefGoogle Scholar
  100. 100.
    Tezel G (2013) Immune regulation towards immunomodulation for neuroprotection in glaucoma. Curr Opin Pharmacol 13:23–31. CrossRefGoogle Scholar
  101. 101.
    Bakalash S, Ben Shlomo G, Aloni E et al (2005) T-cell-based vaccination for morphological and functional neuroprotection in a rat model of chronically elevated intraocular pressure. J Mol Med 83:904–916. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Stephanie Wey
    • 1
  • Sarah Amanullah
    • 1
  • George L. Spaeth
    • 2
  • Melih Ustaoglu
    • 2
  • Kamran Rahmatnejad
    • 2
  • L. Jay Katz
    • 2
    Email author
  1. 1.Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaUSA
  2. 2.Glaucoma Research CenterWills Eye HospitalPhiladelphiaUSA

Personalised recommendations