Factors associated with lamina cribrosa displacement after trabeculectomy

  • Hamed Esfandiari
  • Nils LoewenEmail author
Letter to the Editor (by invitation)


  1. 1.
    Esfandiari H, Efatizadeh A, Hassanpour K et al (2018) Factors associated with lamina cribrosa displacement after trabeculectomy measured by optical coherence tomography in advanced primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 256:2391–2398CrossRefGoogle Scholar
  2. 2.
    Díez-Álvarez L, Muñoz-Negrete FJ, Casas-Llera P et al (2017) Relationship between corneal biomechanical properties and optic nerve head changes after deep sclerectomy. Eur J Ophthalmol 27:535–541CrossRefGoogle Scholar
  3. 3.
    Gizzi C, Cellini M, Campos EC (2018) In vivo assessment of changes in corneal hysteresis and lamina cribrosa position during acute intraocular pressure elevation in eyes with markedly asymmetrical glaucoma. Clin Ophthalmol 12:481–492CrossRefGoogle Scholar
  4. 4.
    Reis ASC, O’Leary N, Stanfield MJ et al (2012) Laminar displacement and prelaminar tissue thickness change after glaucoma surgery imaged with optical coherence tomography. Invest Ophthalmol Vis Sci 53:5819–5826CrossRefGoogle Scholar
  5. 5.
    Sigal IA, Grimm JL, Jan N-J et al (2014) Eye-specific IOP-induced displacements and deformations of human lamina cribrosa. Invest Ophthalmol Vis Sci 55(1):15CrossRefGoogle Scholar
  6. 6.
    Sigal IA, Ethier CR (2009) Biomechanics of the optic nerve head. Exp Eye Res 88:799–807CrossRefGoogle Scholar
  7. 7.
    Burgoyne CF, Downs JC, Bellezza AJ et al (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 24:39–73CrossRefGoogle Scholar
  8. 8.
    Spaide RF, Koizumi H, Pozzoni MC, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500CrossRefGoogle Scholar
  9. 9.
    Fazio MA, Johnstone JK, Smith B et al (2016) Displacement of the lamina cribrosa in response to acute intraocular pressure elevation in normal individuals of African and European descent. Invest Ophthalmol Vis Sci 57:3331–3339CrossRefGoogle Scholar
  10. 10.
    Lanzagorta-Aresti A, Perez-Lopez M, Palacios-Pozo E, Davo-Cabrera J (2017) Relationship between corneal hysteresis and lamina cribrosa displacement after medical reduction of intraocular pressure. Br J Ophthalmol 101:290–294Google Scholar
  11. 11.
    Quigley H, Arora K, Idrees S et al (2017) Biomechanical responses of lamina cribrosa to intraocular pressure change assessed by optical coherence tomography in glaucoma eyes. Invest Ophthalmol Vis Sci 58:2566–2577CrossRefGoogle Scholar
  12. 12.
    Wells AP, Garway-Heath DF, Poostchi A et al (2008) Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients. Invest Ophthalmol Vis Sci 49:3262–3268CrossRefGoogle Scholar
  13. 13.
    Sigal IA, Flanagan JG, Tertinegg I, Ethier CR (2007) Predicted extension, compression and shearing of optic nerve head tissues. Exp Eye Res 85:312–322CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of PittsburghPittsburghUSA

Personalised recommendations