Advertisement

Impact of ab-interno trabeculectomy on Bruch’s membrane opening-based morphometry of the optic nerve head for glaucoma progression analysis

  • David Kiessling
  • Hildegard Christ
  • Caroline Gietzelt
  • Friederike Schaub
  • Thomas S. Dietlein
  • Claus Cursiefen
  • Ludwig M. Heindl
  • Philip EndersEmail author
Glaucoma
  • 48 Downloads

Abstract

Purpose

To analyze the longitudinal change in Bruch’s membrane opening minimal rim width (BMO-MRW) and circumpapillary retinal nerve fiber layer (RNFL) thickness using spectral domain optical coherence tomography (SD-OCT) after glaucoma surgery via ab-interno trabeculectomy in adult glaucoma patients.

Methods

Retrospective audit of 65 eyes of 65 participants undergoing ab-interno trabeculectomy using electroablation of the trabecular meshwork. In 53 eyes, surgery was combined with phacoemulsification and posterior chamber lens implantation. Pre- and postoperative SD-OCT examinations of the optic nerve head (ONH), intraocular pressure (IOP), and visual field data were analyzed. Longitudinal change in morphometric SD-OCT parameters of the ONH was compared and correlated to change in IOP and visual field function.

Results

BMO-MRW increased significantly between baseline (BL) and follow-up (FU) within the first 6 months after surgery (BL = 167.85 ± 90 μm; FU = 175.59 ± 89 μm; p = 0.034). This increase correlated with postoperative lowering of IOP (rho = − 0.41; p = 0.016). Nine months after surgery (range, 7–12 months), there was no significant change in BMO-MRW (BL = 196.79 ± 79; FU = 196.47 ± 85 μm; p = 0.95), while in later follow-up, a decrease of BMO-MRW was found (BL = 175.18 ± 78; FU = 168.65 ± 72; p = 0.05). RNFL thickness was unchanged in early (p > 0.16) and significantly decreased in later follow-up (p = 0.009). Mean deviation (MD) of visual field function did not show a significant change before and after surgery.

Conclusion

Electroablative ab-interno trabeculectomy leads to a significant transient mild increase in BMO-MRW. This increase was shown to correlate with IOP lowering. Significant loss of BMO-MRW in later follow-up may reflect insufficient IOP reduction by surgery. The parameters RNFL thickness and MD seem less impacted directly by surgery.

Keywords

Morphometry of the optic nerve head Structural reversal of disc cupping Optical coherence tomography Glaucoma progression analysis Bruch’s membrane opening minimum rim width 

Abbreviations and acronyms

BCVA

best-corrected visual acuity

BL

baseline

BMO

Bruch’s membrane opening

FU

follow-up

GDD

glaucoma drainage device

ILM

inner limiting membrane

IOP

intraocular pressure

M

months

MD

Mean deviation

MIGS

microinvasive glaucoma surgery

MRW

minimum rim width

MRA

minimum rim area

ONH

optic nerve head

RNFL

retinal nerve fiber layer

SD

standard deviation

SDOCT

spectral domain optical coherence tomography

TOP

tendency-oriented perimetry

Notes

Acknowledgements

We thank all technical experts of our imaging laboratory and well as FOR 2240 “(Lymph-) Angiogenesis And Cellular Immunity In Inflammatory Diseases Of The Eye” for their support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The Institutional Review Board (IRB)/Ethics Committee waived the need for approval due to local regulations on retrospective single-center studies.

References

  1. 1.
    Tatham AJ, Medeiros FA (2017) Detecting structural progression in glaucoma with optical coherence tomography. Ophthalmology 124(12S):S57–S65.  https://doi.org/10.1016/j.ophtha.2017.07.015 CrossRefGoogle Scholar
  2. 2.
    Chauhan BC, Burgoyne CF (2013) From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change. Am J Ophthalmol 156(2):218–227 e212.  https://doi.org/10.1016/j.ajo.2013.04.016 CrossRefGoogle Scholar
  3. 3.
    Chauhan BC, O'Leary N, Almobarak FA, Reis AS, Yang H, Sharpe GP, Hutchison DM, Nicolela MT, Burgoyne CF (2013) Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology 120(3):535–543.  https://doi.org/10.1016/j.ophtha.2012.09.055 CrossRefGoogle Scholar
  4. 4.
    Enders P, Adler W, Kiessling D, Weber V, Schaub F, Hermann MM, Dietlein T, Cursiefen C, Heindl LM (2018) Evaluation of two-dimensional Bruch’s membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort. Acta Ophthalmol.  https://doi.org/10.1111/aos.13698
  5. 5.
    Chauhan BC, Danthurebandara VM, Sharpe GP, Demirel S, Girkin CA, Mardin CY, Scheuerle AF, Burgoyne CF (2015) Bruch's membrane opening minimum rim width and retinal nerve fiber layer thickness in a normal white population: a multicenter study. Ophthalmology 122(9):1786–1794.  https://doi.org/10.1016/j.ophtha.2015.06.001 CrossRefGoogle Scholar
  6. 6.
    Pollet-Villard F, Chiquet C, Romanet JP, Noel C, Aptel F (2014) Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements. Invest Ophthalmol Vis Sci 55(5):2953–2962.  https://doi.org/10.1167/iovs.13-13482 CrossRefGoogle Scholar
  7. 7.
    Enders P, Adler W, Schaub F, Hermann MM, Dietlein T, Cursiefen C, Heindl LM (2016) Novel Bruch’s membrane opening minimum rim area equalizes disc size dependency and offers high diagnostic power for glaucoma. Invest Ophthalmol Vis Sci 57(15):6596–6603.  https://doi.org/10.1167/iovs.16-20561 CrossRefGoogle Scholar
  8. 8.
    Enders P, Schaub F, Adler W, Nikoluk R, Hermann MM, Heindl LM (2016) The use of Bruch's membrane opening-based optical coherence tomography of the optic nerve head for glaucoma detection in microdiscs. Br J Ophthalmol.  https://doi.org/10.1136/bjophthalmol-2016-308957
  9. 9.
    Gardiner SK, Boey PY, Yang H, Fortune B, Burgoyne CF, Demirel S (2015) Structural measurements for monitoring change in glaucoma: comparing retinal nerve fiber layer thickness with minimum rim width and area. Invest Ophthalmol Vis Sci 56(11):6886–6891.  https://doi.org/10.1167/iovs.15-16701 CrossRefGoogle Scholar
  10. 10.
    Mosaed S (2014) The first decade of global trabectome outcomes. Eur Ophthal Rev 08(02).  https://doi.org/10.17925/eor.2014.08.02.113
  11. 11.
    Minckler D, Baerveldt G, Alfaro M, Francis B (2005) Clinical results with the Trabectome for treatment of open-angle glaucoma. Ophthalmology 112(6):962–967.  https://doi.org/10.1016/j.ophtha.2004.12.043 CrossRefGoogle Scholar
  12. 12.
    Francis BA, See RF, Rao NA, Minckler DS, Baerveldt G (2006) Ab interno trabeculectomy: development of a novel device (Trabectome) and surgery for open-angle glaucoma. J Glaucoma 15(1):68–73CrossRefGoogle Scholar
  13. 13.
    Minckler D, Mosaed S, Dustin L, Ms BF (2008) Trabectome (trabeculectomy-internal approach): additional experience and extended follow-up. Trans Am Ophthalmol Soc 106:149–159 discussion 159-160Google Scholar
  14. 14.
    Francis BA, Minckler D, Dustin L, Kawji S, Yeh J, Sit A, Mosaed S, Johnstone M, Trabectome Study G (2008) Combined cataract extraction and trabeculotomy by the internal approach for coexisting cataract and open-angle glaucoma: initial results. J Cataract Refract Surg 34(7):1096–1103.  https://doi.org/10.1016/j.jcrs.2008.03.032 CrossRefGoogle Scholar
  15. 15.
    Medeiros FA (2017) Biomarkers and surrogate endpoints: lessons learned from glaucoma. Invest Ophthalmol Vis Sci 58(6):BIO20–BIO26.  https://doi.org/10.1167/iovs.17-21987 CrossRefGoogle Scholar
  16. 16.
    Medeiros FA (2015) Biomarkers and surrogate endpoints in glaucoma clinical trials. Br J Ophthalmol 99(5):599–603.  https://doi.org/10.1136/bjophthalmol-2014-305550 CrossRefGoogle Scholar
  17. 17.
    Strouthidis NG, Fortune B, Yang H, Sigal IA, Burgoyne CF (2011) Effect of acute intraocular pressure elevation on the monkey optic nerve head as detected by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 52(13):9431–9437.  https://doi.org/10.1167/iovs.11-7922 CrossRefGoogle Scholar
  18. 18.
    Agoumi Y, Sharpe GP, Hutchison DM, Nicolela MT, Artes PH, Chauhan BC (2011) Laminar and prelaminar tissue displacement during intraocular pressure elevation in glaucoma patients and healthy controls. Ophthalmology 118(1):52–59.  https://doi.org/10.1016/j.ophtha.2010.05.016 CrossRefGoogle Scholar
  19. 19.
    Lee EJ, Kim TW, Weinreb RN (2012) Reversal of lamina cribrosa displacement and thickness after trabeculectomy in glaucoma. Ophthalmology 119(7):1359–1366.  https://doi.org/10.1016/j.ophtha.2012.01.034 CrossRefGoogle Scholar
  20. 20.
    Lee EJ, Kim TW, Weinreb RN, Kim H (2013) Reversal of lamina cribrosa displacement after intraocular pressure reduction in open-angle glaucoma. Ophthalmology 120(3):553–559.  https://doi.org/10.1016/j.ophtha.2012.08.047 CrossRefGoogle Scholar
  21. 21.
    Lee EJ, Kim TW (2015) Lamina Cribrosa reversal after trabeculectomy and the rate of progressive retinal nerve Fiber layer thinning. Ophthalmology 122(11):2234–2242.  https://doi.org/10.1016/j.ophtha.2015.07.020 CrossRefGoogle Scholar
  22. 22.
    Waisbourd M, Ahmed OM, Molineaux J, Gonzalez A, Spaeth GL, Katz LJ (2016) Reversible structural and functional changes after intraocular pressure reduction in patients with glaucoma. Graefes Arch Clin Exp Ophthalmol 254(6):1159–1166.  https://doi.org/10.1007/s00417-016-3321-2 CrossRefGoogle Scholar
  23. 23.
    Lesk MR, Spaeth GL, Azuara-Blanco A, Araujo SV, Katz LJ, Terebuh AK, Wilson RP, Moster MR, Schmidt CM (1999) Reversal of optic disc cupping after glaucoma surgery analyzed with a scanning laser tomograph. Ophthalmology 106(5):1013–1018.  https://doi.org/10.1016/s0161-6420(99)00526-6 CrossRefGoogle Scholar
  24. 24.
    Kotecha A, Siriwardena D, Fitzke FW, Hitchings RA, Khaw PT (2001) Optic disc changes following trabeculectomy: longitudinal and localisation of change. Br J Ophthalmol 85(8):956–961CrossRefGoogle Scholar
  25. 25.
    Gietzelt C, Lemke J, Schaub F, Hermann MM, Dietlein TS, Cursiefen C, Enders P, Heindl LM (2018) Structural reversal of disc cupping after trabeculectomy alters Bruch membrane opening-based parameters to assess neuroretinal rim. Am J Ophthalmol 194:143–152.  https://doi.org/10.1016/j.ajo.2018.07.016 CrossRefGoogle Scholar
  26. 26.
    Caprioli J, de Leon JM, Azarbod P, Chen A, Morales E, Nouri-Mahdavi K, Coleman A, Yu F, Afifi A (2016) Trabeculectomy can improve long-term visual function in glaucoma. Ophthalmology 123(1):117–128.  https://doi.org/10.1016/j.ophtha.2015.09.027 CrossRefGoogle Scholar
  27. 27.
    Girard MJ, Tun TA, Husain R, Acharyya S, Haaland BA, Wei X, Mari JM, Perera SA, Baskaran M, Aung T, Strouthidis NG (2015) Lamina cribrosa visibility using optical coherence tomography: comparison of devices and effects of image enhancement techniques. Invest Ophthalmol Vis Sci 56(2):865–874.  https://doi.org/10.1167/iovs.14-14903 CrossRefGoogle Scholar
  28. 28.
    Sharma S, Tun TA, Baskaran M, Atalay E, Thakku SG, Liang Z, Milea D, Strouthidis NG, Aung T, Girard MJ (2018) Effect of acute intraocular pressure elevation on the minimum rim width in normal, ocular hypertensive and glaucoma eyes. Br J Ophthalmol 102(1):131–135.  https://doi.org/10.1136/bjophthalmol-2017-310232 CrossRefGoogle Scholar
  29. 29.
    Heickell AG, Bellezza AJ, Thompson HW, Burgoyne CF (2001) Optic disc surface compliance testing using confocal scanning laser tomography in the normal monkey eye. J Glaucoma 10(5):369–382CrossRefGoogle Scholar
  30. 30.
    Fortune B, Yang H, Strouthidis NG, Cull GA, Grimm JL, Downs JC, Burgoyne CF (2009) The effect of acute intraocular pressure elevation on peripapillary retinal thickness, retinal nerve fiber layer thickness, and retardance. Invest Ophthalmol Vis Sci 50(10):4719–4726.  https://doi.org/10.1167/iovs.08-3289 CrossRefGoogle Scholar
  31. 31.
    Strouthidis NG, Fortune B, Yang H, Sigal IA, Burgoyne CF (2011) Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma. Invest Ophthalmol Vis Sci 52(3):1206–1219.  https://doi.org/10.1167/iovs.10-5599 CrossRefGoogle Scholar
  32. 32.
    Irak I, Zangwill L, Garden V, Shakiba S, Weinreb RN (1996) Change in optic disk topography after trabeculectomy. Am J Ophthalmol 122(5):690–695CrossRefGoogle Scholar
  33. 33.
    Topouzis F, Peng F, Kotas-Neumann R, Garcia R, Sanguinet J, Yu F, Coleman AL (1999) Longitudinal changes in optic disc topography of adult patients after trabeculectomy. Ophthalmology 106(6):1147–1151.  https://doi.org/10.1016/S0161-6420(99)90248-8 CrossRefGoogle Scholar
  34. 34.
    Gietzelt C, Lemke J, Schaub F, Hermann MM, Dietlein TS, Cursiefen C, Enders P, Heindl LM (2018) Structural reversal of disc cupping after trabeculectomy alters Bruch's membrane opening-based parameters to assess neuroretinal rim. Am J Ophthalmol.  https://doi.org/10.1016/j.ajo.2018.07.016

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of OphthalmologyUniversity Hospital of CologneCologneGermany
  2. 2.Institute of Medical Statistics and Computational Biology (ISMB)University of CologneCologneGermany

Personalised recommendations