Advertisement

Choriocapillaris flow features and choroidal vasculature in the fellow eyes of patients with acute central serous chorioretinopathy

  • Cheolmin Yun
  • Jungah Huh
  • So Min Ahn
  • Boram Lee
  • Jee Taek Kim
  • Soon-Young Hwang
  • Seong-Woo Kim
  • Jaeryung OhEmail author
Retinal Disorders
  • 142 Downloads

Abstract

Purpose

The purpose of the study is to investigate the characteristics of choriocapillaris flow based on the underlying choroidal vasculature in fellow eyes with central serous chorioretinopathy (CSC).

Methods

We included 57 patients with CSC and normal controls. Characteristics of choriocapillaris flow were evaluated using swept-source optical coherence tomography (OCT) angiography. We divided the choroidal layer into the vascular and stromal beds according to the choroid vessels on en-face OCT images. We compared the flow void area and mean vascular density of the choriocapillaris according to the underlying choroidal beds in the CSC and control group.

Results

The mean vascular density of the choriocapillaris in the CSC group was not different from that of the control group (P = 0.289). The flow void area was more frequently found in the CSC group (59.6%) than in the control group (29.8%, P = 0.002). The presence of the flow void area in the CSC group was associated with greater macular choroidal thickness (P = 0.004). In the CSC group, the mean flow void area and ratio of the choriocapillaris over the vascular bed were larger than those over the stromal bed (all P < 0.001).

Conclusions

The location of the flow void area of the choriocapillaris was associated with the distribution of the underlying choroidal vessels. This suggests that the underlying choroidal vessels may affect choriocapillaris perfusion in pachychoroid eyes.

Keywords

Central serous chorioretinopathy Optical coherence tomography angiography Choriocapillaris Pachychoroid 

Notes

Funding information

This study was funded by Korea University (grant number K1609751).

Compliance with ethical standards

Conflict of interest

J.O. is a consultant of Topcon Corporation. Other authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Supplementary material

417_2018_4179_MOESM1_ESM.docx (23 kb)
ESM 1 (DOCX 23 kb)
417_2018_4179_Fig7_ESM.png (17.6 mb)
Supplementary Figure 1

(PNG 17973 kb)

417_2018_4179_MOESM2_ESM.tif (26.6 mb)
High resolution image (TIF 27200 kb)

References

  1. 1.
    Daruich A, Matet A, Dirani A, Bousquet E, Zhao M, Farman N, Jaisser F, Behar-Cohen F (2015) Central serous chorioretinopathy: recent findings and new physiopathology hypothesis. Prog Retin Eye Res 48:82–118.  https://doi.org/10.1016/j.preteyeres.2015.05.003 CrossRefGoogle Scholar
  2. 2.
    Hussain D, Gass JD (1998) Idiopathic central serous chorioretinopathy. Indian J Ophthalmol 46:131–137Google Scholar
  3. 3.
    Nishiyama Y, Mori K, Murayama K, Yoneya S (2001) Quantitative analysis of indocyanine green angiographic image in central serous chorioretinopathy. Jpn J Ophthalmol 45:116CrossRefGoogle Scholar
  4. 4.
    Yun C, Oh J, Han JY, Hwang SY, Moon SW, Huh K (2015) Peripapillary choroidal thickness in central serous chorioretinopathy: is choroid outside the macula also thick? Retina 35:1860–1866.  https://doi.org/10.1097/IAE.0000000000000539 CrossRefGoogle Scholar
  5. 5.
    Hirami Y, Tsujikawa A, Sasahara M, Gotoh N, Tamura H, Otani A, Mandai M, Yoshimura N (2007) Alterations of retinal pigment epithelium in central serous chorioretinopathy. Clin Exp Ophthalmol 35:225–230.  https://doi.org/10.1111/j.1442-9071.2006.01447.x CrossRefGoogle Scholar
  6. 6.
    Imamura Y, Fujiwara T, Margolis R, Spaide RF (2009) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 29:1469–1473.  https://doi.org/10.1097/IAE.0b013e3181be0a83 CrossRefGoogle Scholar
  7. 7.
    Nicholson B, Noble J, Forooghian F, Meyerle C (2013) Central serous chorioretinopathy: update on pathophysiology and treatment. Surv Ophthalmol 58:103–126.  https://doi.org/10.1016/j.survophthal.2012.07.004 CrossRefGoogle Scholar
  8. 8.
    Prunte C, Flammer J (1996) Choroidal capillary and venous congestion in central serous chorioretinopathy. Am J Ophthalmol 121:26–34CrossRefGoogle Scholar
  9. 9.
    Dansingani KK, Balaratnasingam C, Naysan J, Freund KB (2016) En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography. Retina 36:499–516.  https://doi.org/10.1097/IAE.0000000000000742 CrossRefGoogle Scholar
  10. 10.
    Gallego-Pinazo R, Dolz-Marco R, Gomez-Ulla F, Mrejen S, Freund KB (2014) Pachychoroid diseases of the macula. Med Hypothesis Discov Innov Ophthalmol 3:111–115Google Scholar
  11. 11.
    Iida T, Kishi S, Hagimura N, Shimizu K (1999) Persistent and bilateral choroidal vascular abnormalities in central serous chorioretinopathy. Retina 19:508–512CrossRefGoogle Scholar
  12. 12.
    Pang CE, Freund KB (2014) Pachychoroid pigment epitheliopathy may masquerade as acute retinal pigment epitheliitis. Invest Ophthalmol Vis Sci 55:5252.  https://doi.org/10.1167/iovs.14-14959 CrossRefGoogle Scholar
  13. 13.
    Pang CE, Freund KB (2015) Pachychoroid neovasculopathy. Retina 35:1–9.  https://doi.org/10.1097/IAE.0000000000000331 CrossRefGoogle Scholar
  14. 14.
    Warrow DJ, Hoang QV, Freund KB (2013) Pachychoroid pigment epitheliopathy. Retina 33:1659–1672.  https://doi.org/10.1097/IAE.0b013e3182953df4 CrossRefGoogle Scholar
  15. 15.
    Gao SS, Jia Y, Zhang M, Su JP, Liu G, Hwang TS, Bailey ST, Huang D (2016) Optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:Oct27–Oct36.  https://doi.org/10.1167/iovs.15-19043 CrossRefGoogle Scholar
  16. 16.
    Chan SY, Wang Q, Wei WB, Jonas JB (2016) Optical coherence tomographic angiography in central serous chorioretinopathy. Retina 36:2051–2058.  https://doi.org/10.1097/IAE.0000000000001064 CrossRefGoogle Scholar
  17. 17.
    Feucht N, Maier M, Lohmann CP, Reznicek L (2016) OCT angiography findings in acute central serous chorioretinopathy. Ophthalmic Surg Lasers Imaging Retina 47:322–327.  https://doi.org/10.3928/23258160-20160324-03 CrossRefGoogle Scholar
  18. 18.
    Nicolo M, Rosa R, Musetti D, Musolino M, Saccheggiani M, Traverso CE (2017) Choroidal vascular flow area in central serous chorioretinopathy using swept-source optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58:2002–2010.  https://doi.org/10.1167/iovs.17-21417 CrossRefGoogle Scholar
  19. 19.
    Shinojima A, Kawamura A, Mori R, Fujita K, Yuzawa M (2016) Findings of optical coherence tomographic angiography at the choriocapillaris level in central serous chorioretinopathy. Ophthalmologica 236:108–113.  https://doi.org/10.1159/000448436 CrossRefGoogle Scholar
  20. 20.
    Teussink MM, Breukink MB, van Grinsven MJ, Hoyng CB, Klevering BJ, Boon CJ, de Jong EK, Theelen T (2015) OCT angiography compared to fluorescein and indocyanine green angiography in chronic central serous chorioretinopathy. Invest Ophthalmol Vis Sci 56:5229–5237.  https://doi.org/10.1167/iovs.15-17140 CrossRefGoogle Scholar
  21. 21.
    Agrawal R, Salman M, Tan KA, Karampelas M, Sim DA, Keane PA, Pavesio C (2016) Choroidal vascularity index (CVI)—a novel optical coherence tomography parameter for monitoring patients with panuveitis? PLoS One 11:e0146344.  https://doi.org/10.1371/journal.pone.0146344 CrossRefGoogle Scholar
  22. 22.
    Sonoda S, Sakamoto T, Yamashita T, Shirasawa M, Uchino E, Terasaki H, Tomita M (2014) Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Invest Ophthalmol Vis Sci 55:3893–3899.  https://doi.org/10.1167/iovs.14-14447 CrossRefGoogle Scholar
  23. 23.
    Sonoda S, Sakamoto T, Yamashita T, Uchino E, Kawano H, Yoshihara N, Terasaki H, Shirasawa M, Tomita M, Ishibashi T (2015) Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol 159:1123–1131 e1121.  https://doi.org/10.1016/j.ajo.2015.03.005 CrossRefGoogle Scholar
  24. 24.
    Ahn J, Yoo G, Kim JT, Kim SW, Oh J (2017) Choriocapillaris layer imaging with swept-source optical coherence tomography angiography in lamellar and full-thickness macular hole. Graefes Arch Clin Exp Ophthalmol.  https://doi.org/10.1007/s00417-017-3814-7
  25. 25.
    Rochepeau C, Kodjikian L, Garcia MA, Coulon C, Burillon C, Denis P, Delaunay B, Mathis T (2018) OCT-angiography quantitative assessment of choriocapillaris blood flow in central serous chorioretinopathy. Am J Ophthalmol.  https://doi.org/10.1016/j.ajo.2018.07.004
  26. 26.
    Spaide RF (2016) Choriocapillaris flow features follow a power law distribution: implications for characterization and mechanisms of disease progression. Am J Ophthalmol 170:58–67.  https://doi.org/10.1016/j.ajo.2016.07.023 CrossRefGoogle Scholar
  27. 27.
    Spaide RF (2017) Choriocapillaris signal voids in maternally inherited diabetes and deafness and in pseudoxanthoma elasticum. Retina 37:2008–2014.  https://doi.org/10.1097/IAE.0000000000001497 CrossRefGoogle Scholar
  28. 28.
    Yang Y, Wang J, Jiang H, Yang X, Feng L, Hu L, Wang L, Lu F, Shen M (2016) Retinal microvasculature alteration in high myopia. Invest Ophthalmol Vis Sci 57:6020–6030.  https://doi.org/10.1167/iovs.16-19542 CrossRefGoogle Scholar
  29. 29.
    Rosenfeld PJ, Durbin MK, Roisman L, Zheng F, Miller A, Robbins G, Schaal KB, Gregori G (2016) ZEISS angioplex spectral domain optical coherence tomography angiography: technical aspects. Dev Ophthalmol 56:18–29.  https://doi.org/10.1159/000442773 CrossRefGoogle Scholar
  30. 30.
    Yun C, Han JY, Cho S, Hwang SY, Kim SW, Oh J (2017) Ocular perfusion pressure and choroidal thickness in central serous chorioretinopathy and pigment epitheliopathy. Retina.  https://doi.org/10.1097/IAE.0000000000001916
  31. 31.
    Matet A, Daruich A, Hardy S, Behar-Cohen F (2018) Patterns of choriocapillaris flow signal voids in central serous chorioretinopathy: an optical coherence tomography angiography study. Retina.  https://doi.org/10.1097/IAE.0000000000002271
  32. 32.
    Bhutto I, Lutty G (2012) Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane/choriocapillaris complex. Mol Asp Med 33:295–317.  https://doi.org/10.1016/j.mam.2012.04.005 CrossRefGoogle Scholar
  33. 33.
    Ferrara D, Waheed NK, Duker JS (2016) Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies. Prog Retin Eye Res 52:130–155.  https://doi.org/10.1016/j.preteyeres.2015.10.002 CrossRefGoogle Scholar
  34. 34.
    Hogan MJ (1961) Ultrastructure of the choroid. Its role in the pathogenesis of chorioretinal disease. Trans Pac Coast Otoophthalmol Soc Annu Meet 42:61–87Google Scholar
  35. 35.
    Flower RW (1993) Extraction of choriocapillaris hemodynamic data from ICG fluorescence angiograms. Invest Ophthalmol Vis Sci 34:2720–2729Google Scholar
  36. 36.
    Almeida DR, Zhang L, Chin EK, Mullins RF, Kucukevcilioglu M, Critser DB, Sonka M, Stone EM, Folk JC, Abramoff MD, Russell SR (2015) Comparison of retinal and choriocapillaris thicknesses following sitting to supine transition in healthy individuals and patients with age-related macular degeneration. JAMA Ophthalmol 133:297–303.  https://doi.org/10.1001/jamaophthalmol.2014.5168 CrossRefGoogle Scholar
  37. 37.
    Garcia-Polite F, Martorell J, Del Rey-Puech P, Melgar-Lesmes P, O’Brien CC, Roquer J, Ois A, Principe A, Edelman ER, Balcells M (2017) Pulsatility and high shear stress deteriorate barrier phenotype in brain microvascular endothelium. J Cereb Blood Flow Metab 37:2614–2625.  https://doi.org/10.1177/0271678x16672482 CrossRefGoogle Scholar
  38. 38.
    Slakter JS, Yannuzzi LA, Guyer DR, Sorenson JA, Orlock DA (1995) Indocyanine-green angiography. Curr Opin Ophthalmol 6:25–32CrossRefGoogle Scholar
  39. 39.
    Uyama M, Matsunaga H, Matsubara T, Fukushima I, Takahashi K, Nishimura T (1999) Indocyanine green angiography and pathophysiology of multifocal posterior pigment epitheliopathy. Retina 19:12–21CrossRefGoogle Scholar
  40. 40.
    Ghasemi Falavarjani K, Al-Sheikh M, Akil H, Sadda SR (2017) Image artefacts in swept-source optical coherence tomography angiography. Br J Ophthalmol 101:564–568.  https://doi.org/10.1136/bjophthalmol-2016-309104 CrossRefGoogle Scholar
  41. 41.
    Mrejen S, Sarraf D, Mukkamala SK, Freund KB (2013) Multimodal imaging of pigment epithelial detachment: a guide to evaluation. Retina 33:1735–1762.  https://doi.org/10.1097/IAE.0b013e3182993f66 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Cheolmin Yun
    • 1
  • Jungah Huh
    • 1
  • So Min Ahn
    • 1
  • Boram Lee
    • 1
  • Jee Taek Kim
    • 2
  • Soon-Young Hwang
    • 3
  • Seong-Woo Kim
    • 1
  • Jaeryung Oh
    • 1
    Email author
  1. 1.Department of OphthalmologyKorea University College of MedicineSeoulSouth Korea
  2. 2.Department of OphthalmologyChung-Ang University College of MedicineSeoulSouth Korea
  3. 3.Department of BiostatisticsKorea University College of MedicineSeoulSouth Korea

Personalised recommendations