Prevalences of segmentation errors and motion artifacts in OCT-angiography differ among retinal diseases

  • J. L. Lauermann
  • A. K. Woetzel
  • M. Treder
  • M. Alnawaiseh
  • C. R. Clemens
  • N. Eter
  • Florian AltenEmail author
Retinal Disorders



To assess the prevalences of segmentation errors and motion artifacts in optical coherence tomography angiography (OCT-A) in different retinal diseases


In a retrospective analysis, multimodal retinal imaging including OCT-A was performed in one eye of 57 healthy controls (50.96 ± 22.4 years) and 149 patients (66.42 ± 14.1 years) affected by different chorioretinal diseases: early/intermediate age-related macular degeneration (AMD; n = 26), neovascular AMD (nAMD; n = 22), geographic atrophy due to AMD (GA; n = 6), glaucoma (n = 28), central serous chorioretinopathy (CSC; n = 14), epiretinal membrane (EM; n = 26), retinal vein occlusion (RVO; n = 11), and retinitis pigmentosa (RP; n = 16). Central 3 × 3 mm2 OCT-A imaging was performed with active eye-tracking (AngioVue, Optovue). Best-corrected visual acuity (BCVA) and signal strength index (SSI) were recorded. Images were independently evaluated by two graders using the OCT-A motion artifact score (MAS; scores I–IV) as well as a newly introduced segmentation accuracy score (SAS; score I–IIB).


Mean SSI was 63.67 ± 9.2 showing a negative correlation with increasing age (rSp = − 0.42, p < 0.001, n = 206). In the healthy cohort, mean MAS was 1.45 ± 0.8 and segmentation was accurate (SAS I) in all eyes. In eyes with retinal pathologies, mean MAS was 2.1 ± 0.9 (p < 0.001). Lowest MAS was observed in GA (2.67 ± 0.5) and RVO (2.45 ± 1.1). Compared to an accurate segmentation in 100% in healthy subjects, 34.2% (n = 51) of all patients showed highest segmentation quality (p < 0.001). 63.8% showed segmentation errors in more than 5% of all single b-scans in one (SAS IIA, n = 58) or at least two (SAS IIB, n = 40) segmentation boundaries. Highest percentages of inaccurate segmentation (SAS IIA or IIB) were observed in the nAMD group (90.1%). The inner plexiform layer was the segmentation boundary most prone to inaccurate segmentation in all pathologies compared to the inner limiting membrane (ILM) and retinal pigment epithelium (RPE) segmentation layer. Incorrect ILM segmentation was only seen in patients with EM.


Prior to both qualitative and quantitative analysis, OCT-A images must be carefully reviewed as motion artifacts and segmentation errors in current OCT-A technology are frequent particularly in pathologically altered maculae.


Age-related macular degeneration OCT-angiography Optical coherence tomography angiography Spectral-domain optical coherence tomography Eye tracking Image artifacts Motion artifacts Image quality Segmentation 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study, formal consent is not required.


  1. 1.
    Jia Y, Bailey ST, Hwang TS et al (2015) Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A 112:E2395–E2402CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cole ED, Ferrara D, Novais EA, Louzada RN, Waheed NK (2016) Clinical trial endpoints for optical coherence tomography angiography in neovascular age-related macular degeneration. Retina 36(Suppl 1):S83–S92CrossRefPubMedGoogle Scholar
  3. 3.
    Say EA, Ferenczy S, Magrath GN, Samara WA, Khoo CT, Shields CL (2017) Image quality and artifacts on optical coherence tomography angiography: comparison of pathologic and paired fellow eyes in 65 patients with unilateral choroidal melanoma treated with plaque radiotherapy. Retina 37(9):1660–1673CrossRefPubMedGoogle Scholar
  4. 4.
    Sadda SR, Wu Z, Walsh AC et al (2006) Errors in retinal thickness measurements obtained by optical coherence tomography. Ophthalmology 113:285–293CrossRefPubMedGoogle Scholar
  5. 5.
    Al-Sheikh M, Ghasemi Falavarjani K, Akil H, Sadda SR (2017) Impact of image quality on OCT angiography based quantitative measurements. Int J Retina Vitreous 3:13CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lauermann JL, Treder M, Heiduschka P, Clemens CR, Eter N, Alten F (2017) Impact of eye-tracking technology on OCT-angiography imaging quality in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 255:1535–1542CrossRefPubMedGoogle Scholar
  7. 7.
    Spaide RF, Fujimoto JG, Waheed NK (2015) Image artifacts in optical coherence tomography angiography. Retina 35:2163–2180CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lumbroso B, Huang D, Jia Y, Rispoli M, Romano A, Waheed NK (2015) Clinical OCT angiography atlas. Jaypee Brothers Medical Publishers, New DelhiCrossRefGoogle Scholar
  9. 9.
    Alten F, Lauermann JL, Clemens CR, Heiduschka P, Eter N (2017) Signal reduction in choriocapillaris and segmentation errors in spectral domain OCT angiography caused by soft drusen. Graefes Arch Clin Exp Ophthalmol 255(12):2347–2355CrossRefPubMedGoogle Scholar
  10. 10.
    Ghasemi Falavarjani K, Al-Sheikh M, Akil H, Sadda SR (2017) Image artefacts in swept-source optical coherence tomography angiography. Br J Ophthalmol 101(5):564–568CrossRefPubMedGoogle Scholar
  11. 11.
    Han IC, Jaffe GJ (2010) Evaluation of artifacts associated with macular spectral-domain optical coherence tomography. Ophthalmology 117:1177–89.e4CrossRefPubMedGoogle Scholar
  12. 12.
    Kraus MF, Potsaid B, Mayer MA et al (2012) Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns. Biomed Opt Express 3(6):1182–1199CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Uji A, Balasubramanian S, Lei J, Baghdasaryan E, Al-Sheikh M, Sadda SR (2017) Choriocapillaris imaging using multiple en face optical coherence tomography angiography image averaging. JAMA Ophthalmol 135:1197–1204CrossRefPubMedGoogle Scholar
  14. 14.
    Decroos FC, Stinnett SS, Heydary CS, Burns RE, Jaffe GJ (2013) Reading center characterization of central retinal vein occlusion using optical coherence tomography during the COPERNICUS trial. Transl Vis Sci Technol 2(7):7CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Spaide RF, Curcio CA (2017) Evaluation of segmentation of the superficial and deep vascular layers of the retina by optical coherence tomography angiography instruments in normal eyes. JAMA Ophthalmol 135:259–262CrossRefPubMedGoogle Scholar
  16. 16.
    Linderman R, Salmon AE, Strampe M, Russillo M, Khan J, Carroll J (2017) Assessing the accuracy of foveal avascular zone measurements using optical coherence tomography angiography: segmentation and scaling. Transl Vis Sci Technol 6(3):16CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhang M, Hwang TS, Campbell JP, Bailey ST, Wilson DJ, Huang D, Jia Y (2016) Projection-resolved optical coherence tomographic angiography. Biomed Opt Express 7(3):816–828CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang J, Zhang M, Hwang TS, Bailey ST, Huang D, Wilson DJ, Jia Y (2017) Reflectance-based projection-resolved optical coherence tomography angiography [invited]. Biomed Opt Express 8(3):1536–1548CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Onishi AC, Ashraf M, Soetikno BT, Fawzi AA (2018) Multilevel ischemia in disorganization of the retinal inner layers on projection-resolved optical coherence tomography angiography. Retina.
  20. 20.
    Fenner BJ, Tan GS, Tan AC, Yeo IY, Wong TY, Cheung GC (2017) Identification of imaging features that determine quality and repeatability of retinal capillary plexus density measurements in OCT angiography. Br J Ophthalmol 102(4):509–514PubMedGoogle Scholar
  21. 21.
    Shields CL, Say EA, Samara WA, Khoo CT, Mashayekhi A, Shields JA (2016) Optical coherence tomography angiography of the macula after plaque radiotherapy of choroidal melanoma: comparison of irradiated versus nonirradiated eyes in 65 patients. Retina 36(8):1493e1505CrossRefGoogle Scholar
  22. 22.
    Jeoung JW, Choi YJ, Park KH, Kim DM (2013) Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 54:4422–4429CrossRefPubMedGoogle Scholar
  23. 23.
    Mwanza JC, Durbin MK, Budenz DL et al (2012) Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology 119:1151–1158CrossRefPubMedGoogle Scholar
  24. 24.
    Kim HJ, Lee SY, Park KH, Kim DM, Jeoung JW (2016) Glaucoma diagnostic ability of layer-by-layer segmented ganglion cell complex by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 57:4799–4805CrossRefPubMedGoogle Scholar
  25. 25.
    Nelis P, Alten F, Clemens CR, Heiduschka P, Eter N (2017) Quantification of changes in foveal capillary architecture caused by idiopathic epiretinal membrane using OCT angiography. Graefes Arch Clin Exp Ophthalmol 255:1319–1324CrossRefPubMedGoogle Scholar
  26. 26.
    Rogala J, Zangerl B, Assaad N, Fletcher EL, Kalloniatis M, Nivison-Smith L (2015) In vivo quantification of retinal changes associated with drusen in age-related macular degeneration. Invest Ophthalmol Vis Sci 56:1689–1700CrossRefPubMedGoogle Scholar
  27. 27.
    Muftuoglu IK, Ramkumar HL, Bartsch DU, Meshi A, Gaber R, Freeman WR (2017) Quantitative analysis of the inner retinal layer thickness in age-related macular degeneration using corrected optical coherence tomography segmentation. Retina.
  28. 28.
    Louzada RN, de Carlo TE, Adhi M et al (2017) Optical coherence tomography angiography artifacts in retinal pigment epithelial detachment. Can J Ophthalmol 52(4):419–424CrossRefPubMedGoogle Scholar
  29. 29.
    Lang A, Carass A, Bittner AK, Ying HS, Prince JL (2017) Improving graph-based OCT segmentation for severe pathology in retinitis pigmentosa patients. Proc SPIE Int Soc Opt Eng 10137Google Scholar
  30. 30.
    Spaide RF (2016) Volume-rendered optical coherence tomography of retinal vein occlusion pilot study. Am J Ophthalmol 165:133–144CrossRefPubMedGoogle Scholar
  31. 31.
    Iida Y, Muraoka Y, Ooto S, Suzuma K, Murakami T, Iida-Miwa Y, Ghashut R, Tsujikawa A (2017) Morphologic and functional retinal vessel changes in branch retinal vein occlusion: an optical coherence tomography angiography study. Am J Ophthalmol 182:168–179CrossRefPubMedGoogle Scholar
  32. 32.
    Niu S, Chen Q, de Sisternes L, Rubin DL, Zhang W, Liu Q (2014) Automated retinal layers segmentation in SD-OCT images using dual gradient and spatial correlation smoothness constraint. Comput Biol Med 54:116–128CrossRefPubMedGoogle Scholar
  33. 33.
    Treder M, Lauermann JL, Eter N (2018) Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefes Arch Clin Exp Ophthalmol 256(2):259–265CrossRefPubMedGoogle Scholar
  34. 34.
    Bogunovic H, Waldstein S, Schlegl T, Langs G, Sadeghipour A, Liu X, Gerendas B, Osborne A, Schmidt-Erfurth U (2017) Prediction of anti-VEGF treatment requirements in neovascular AMD using a machine learning approach. Invest Ophthalmol Vis Sci 58:3240–4248CrossRefPubMedGoogle Scholar
  35. 35.
    de Sisternes L, Jonna G, Moss J, Marmor MF, Leng T, Rubin DL (2017) Automated intraretinal segmentation of SD-OCT images in normal and age-related macular degeneration eyes. Biomed Opt Express 8(3):1926–1949CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • J. L. Lauermann
    • 1
  • A. K. Woetzel
    • 1
  • M. Treder
    • 1
  • M. Alnawaiseh
    • 1
  • C. R. Clemens
    • 1
  • N. Eter
    • 1
  • Florian Alten
    • 1
    Email author
  1. 1.Department of OphthalmologyUniversity of Muenster Medical CenterMuensterGermany

Personalised recommendations