Advertisement

Vessel density, retinal thickness, and choriocapillaris vascular flow in myopic eyes on OCT angiography

  • Paolo Milani
  • Giovanni Montesano
  • Luca Rossetti
  • Fulvio Bergamini
  • Alfredo Pece
Retinal Disorders

Abstract

Purpose

To investigate foveal avascular zone area, macular vascular density, choroidal thickness, and outer retina and choriocapillaris flow in myopic eyes by OCT angiography.

Methods

Automated macular maps and flow calculations were retrospectively evaluated in 42 myopic and in 40 control eyes.

Results

Myopic eyes presented lower whole superficial vessel density (46.4 ± 4.9 vs. 51.6 ± 3.6%, P < 0.0001) and higher flow area in the outer retina (1.3 ± 0.2 vs. 1.1 ± 0.3 mm2, P = 0.0012). Between the myopic and non-myopic eyes, no significant differences could be detected in the choriocapillaris perfusion area (1.9 ± 0.07 vs. 1.9 ± 0.05 mm2, respectively; P = 0.55) and in the foveal avascular zone area (0.23 ± 0.1 vs. 0.26 ± 0.1 mm2, respectively; P = 0.12). The spherical correction positively correlated with superficial vessel density and negatively correlated with outer retina perfusion (P ≤ 0.0021). The superficial vessel density and the local retinal thickness positively correlated at all macular locations (P < 0.005), especially in the foveal region (P < 0.0001).

Conclusions

Eyes with high myopia present reduced superficial vascular density and increased outer retina flow. Superficial vascular density and retinal thickness appear to be significantly correlated.

Keywords

OCT angiography Myopia Choriocapillaris Vessel density Outer retina 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Wong TY, Ferreira A, Hughes R et al (2014) Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review. Am J Ophthalmol 157:9–25CrossRefPubMedGoogle Scholar
  2. 2.
    Li M, Yang Y, Jiang H et al (2017) Retinal microvascular network and microcirculation assessments in high myopia. Am J Ophthalmol 174:56–67CrossRefPubMedGoogle Scholar
  3. 3.
    Yang Y, Wang J, Jiang H et al (2016) Retinal microvasculature alteration in high myopia. Invest Ophthalmol Vis Sci 57:6020–6030CrossRefPubMedGoogle Scholar
  4. 4.
    Al-Sheikh M, Phasukkijwatana N, Dolz-Marco R et al (2017) Quantitative OCT angiography of the retinal microvasculature and the choriocapillaris in myopic eyes. Invest Ophthalmol Vis Sci 58:2063–2069CrossRefPubMedGoogle Scholar
  5. 5.
    Mo J, Duan A, Chan S, Wang X, Wei W (2017) Vascular flow density in pathological myopia: an optical coherence tomography angiography study. BMJ Open 7(2):e013571CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fan H, Chen HY, Ma HJ et al (2017) Reduced macular vascular density in myopic eyes. Chin Med J (Engl) 130:445–451CrossRefGoogle Scholar
  7. 7.
    Shimada N, Ohno-Matsui K, Harino S et al (2004) Reduction of retinal blood flow in high myopia. Graefes Arch Clin Exp Ophthalmol 242:284–288CrossRefPubMedGoogle Scholar
  8. 8.
    Akyol N, Kukner AS, Ozdemir T, Esmerligil S (1996) Choroidal and retinal blood flow changes in degenerative myopia. Can J Ophthalmol 31:113–119PubMedGoogle Scholar
  9. 9.
    Benavente-Perez A, Hosking SL, Logan NS, Broadway DC (2010) Ocular blood flow measurements in healthy human myopic eyes. Graefes Arch Clin Exp Ophthalmol 248:1587–1594CrossRefPubMedGoogle Scholar
  10. 10.
    La Spina C, Corvi F, Bandello F, Querques G (2016) Static characteristics and dynamic functionality of retinal vessels in longer eyes with or without pathologic myopia. Graefes Arch Clin Exp Ophthalmol 254:827–834CrossRefPubMedGoogle Scholar
  11. 11.
    Tan CS, Lim LW, Chow VS et al (2016) Optical coherence tomography angiography evaluation of the parafoveal vasculature and its relationship with ocular factors. Invest Ophthalmol Vis Sci 57:224–234CrossRefGoogle Scholar
  12. 12.
    Samara WA, Say EA, Khoo CT et al (2015) Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina 35:2188–2195CrossRefPubMedGoogle Scholar
  13. 13.
    Yu J, Jiang C, Wang X et al (2015) Macular perfusion in healthy Chinese: an optical coherence tomography angiogram study. Invest Ophthalmol Vis Sci 56:3212–3217CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Iafe NA, Phasukkijwatana N, Chen X, Sarraf D (2016) Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography. Investig Ophthalmol Vis Sci 57:5780–5787CrossRefGoogle Scholar
  15. 15.
    Wang Q, Chan S, Yang JY et al (2016) Vascular density in retina and choriocapillaris as measured by optical coherence tomography angiography. Am J Ophthalmol 168:95–109CrossRefPubMedGoogle Scholar
  16. 16.
    Chui TY, VanNasdale DA, Elsner AE, Burns SA (2014) The association between the foveal avascular zone and retinal thickness. Invest Ophthalmol Vis Sci 55:6870–6877CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Myers CE, Klein BE, Meuer SM, Swift MK, Chandler CS, Huang Y et al (2015) Retinal thickness measured by spectral-domain optical coherence tomography in eyes without retinal abnormalities: the beaver dam eye study. Am J Ophthalmol 159:445–456.e1CrossRefPubMedGoogle Scholar
  18. 18.
    Song WK, Lee SC, Lee ES, Kim CY, Kim SS (2010) Macular thickness variations with sex, age, and axial length in healthy subjects: a spectral domain-optical coherence tomography study. Invest Ophthalmol Vis Sci 51:3913–3918CrossRefPubMedGoogle Scholar
  19. 19.
    Wu PC, Chen YJ, Chen CH et al (2008) Assessment of macular retinal thickness and volume in normal eyes and highly myopic eyes with third-generation optical coherence tomography. Eye (Lond) 22:551–555CrossRefGoogle Scholar
  20. 20.
    Zhao Z, Zhou X, Jiang C, Sun X (2015) Effects of myopia on different areas and layers of the macula: a Fourier-domain optical coherence tomography study of a Chinese cohort. BMC Ophthalmol 15(1):90CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lam DS, Leung KS, Mohamed S et al (2007) Regional variations in the relationship between macular thickness measurements and myopia. Invest Ophthalmol Vis Sci 48:376–382CrossRefPubMedGoogle Scholar
  22. 22.
    Sato A, Fukui E, Ohta K (2010) Retinal thickness of myopic eyes determined by spectralis optical coherence tomography. Br J Ophthalmol 94(12):1624–1628CrossRefPubMedGoogle Scholar
  23. 23.
    Spaide RF (2016) Choriocapillaris flow features follow a power law distribution: implications for characterization and mechanisms of disease progression. Am J Ophthalmol 170:58–67CrossRefPubMedGoogle Scholar
  24. 24.
    Flores-Moreno I, Lugo F, Duker JS, Ruiz-Moreno JM (2013) The relationship between axial length and choroidal thickness in eyes with high myopia. Am J Ophthalmol 155:314–319.e1CrossRefPubMedGoogle Scholar
  25. 25.
    Ho M, Liu DT, Chan VC, Lam DS (2013) Choroidal thickness measurement in myopic eyes by enhanced depth optical coherence tomography. Ophthalmology 120:1909–1914CrossRefPubMedGoogle Scholar
  26. 26.
    Ikuno Y, Fujimoto S, Jo Y, Asai T, Nishida K (2013) Choroidal thinning in high myopia measured by optical coherence tomography. Clin Ophthalmol 7:889–893CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nicolò M, Rosa R, Musetti D et al (2017) Choroidal vascular flow area in central serous chorioretinopathy using swept-source optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58:2002–2010CrossRefPubMedGoogle Scholar
  28. 28.
    Spaide RF, Fujimoto JG, Waheed NK (2015) Image artifacts in optical coherence tomography angiography. Retina 35:2163–2180CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Magrath GN, Say EA, Sioufi K et al (2017) Variability in foveal avascular zone and capillary density using optical coherence tomography angiography machines in healthy eyes. Retina 37:2102–2111CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Paolo Milani
    • 1
  • Giovanni Montesano
    • 2
    • 3
  • Luca Rossetti
    • 2
  • Fulvio Bergamini
    • 4
  • Alfredo Pece
    • 5
  1. 1.Istituto Auxologico Italiano and Retina 3000 Eye CenterMilanItaly
  2. 2.University of Milan-ASST Santi Paolo e CarloMilanItaly
  3. 3.City, University of London, Optometry and Visual SciencesLondonUK
  4. 4.Istituto Auxologico ItalianoMilanItaly
  5. 5.Melegnano Hospital and Retina 3000 Eye CenterMilanItaly

Personalised recommendations