Advertisement

Outflow enhancement by three different ab interno trabeculectomy procedures in a porcine anterior segment model

  • Yalong Dang
  • Chao Wang
  • Priyal Shah
  • Susannah Waxman
  • Ralitsa T. Loewen
  • Ying Hong
  • Hamed Esfandiari
  • Nils A. LoewenEmail author
Basic Science

Abstract

Purpose

To evaluate three different microincisional ab interno trabeculectomy procedures in a porcine eye perfusion model.

Methods

In perfused porcine anterior segments, 90° of trabecular meshwork (TM) was ablated using the Trabectome (T; n = 8), Goniotome (G; n = 8), or Kahook device (K; n = 8). After 24 h, additional 90° of TM was removed. Intraocular pressure (IOP) and outflow facility were measured at 5 and 10 μl/min perfusion to simulate an elevated IOP. Structure and function were assessed with canalograms and histology.

Results

At 5 μl/min infusion rate, T resulted in a greater IOP reduction than G or K from baseline (76.12% decrease versus 48.19% and 47.96%, P = 0.013). IOP reduction between G and K was similar (P = 0.420). Removing another 90° of TM caused an additional IOP reduction only in T and G but not in K. Similarly, T resulted in the largest increase in outflow facility at 5 μl/min compared with G and K (first ablation, 3.41 times increase versus 1.95 and 1.87; second ablation, 4.60 versus 2.50 and 1.74) with similar results at 10 μl/min (first ablation, 3.28 versus 2.29 and 1.90 (P = 0.001); second ablation, 4.10 versus 3.01 and 2.01 (P = 0.001)). Canalograms indicated circumferential flow beyond the ablation endpoints.

Conclusions

T, G, and K significantly increased the outflow facility. In this model, T had a larger effect than G and K.

Keywords

Ab interno trabeculectomy Intraocular pressure Outflow facility Canalogram Trabecular meshwork 

Notes

Funding

This study was funded by the Wiegand Fellowship of the Eye and Ear Foundation of Pittsburgh (YD), by the Initiative to Cure Glaucoma of the Eye and Ear Foundation of Pittsburgh (NAL), by an NIH CORE Grant P30 EY08098 to the Department of Ophthalmology, and an unrestricted grant from Research to Prevent Blindness, New York, NY.

Compliance with ethical standards

Conflict of interest

Author NAL has received speaker honoraria for lectures and wetlabs from Neomedix Corp.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. No animals were sacrificed for the purpose of doing research. An approval by an ethics committee or institutional animal care and use committee was not required.

References

  1. 1.
    Gedde SJ, Herndon LW, Brandt JD et al (2012) Postoperative complications in the Tube Versus Trabeculectomy (TVT) study during five years of follow-up. Am J Ophthalmol 153:804–814.e1CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chou J, Turalba A, Hoguet A (2017) Surgical innovations in glaucoma: the transition from trabeculectomy to MIGS. Int Ophthalmol Clin 57:39–55CrossRefPubMedGoogle Scholar
  3. 3.
    Saheb H, Ahmed IIK (2012) Micro-invasive glaucoma surgery: current perspectives and future directions. Curr Opin Ophthalmol 23:96–104CrossRefPubMedGoogle Scholar
  4. 4.
    Kaplowitz K, Schuman JS, Loewen NA (2014) Techniques and outcomes of minimally invasive trabecular ablation and bypass surgery. Br J Ophthalmol 98:579–585CrossRefPubMedGoogle Scholar
  5. 5.
    Shingleton BJ, Laul A, Nagao K et al (2008) Effect of phacoemulsification on intraocular pressure in eyes with pseudoexfoliation: single-surgeon series. J Cataract Refract Surg 34:1834–1841CrossRefPubMedGoogle Scholar
  6. 6.
    Richter GM, Coleman AL (2016) Minimally invasive glaucoma surgery: current status and future prospects. Clin Ophthalmol 10:189–206PubMedPubMedCentralGoogle Scholar
  7. 7.
    Ethier CR, Kamm RD, Palaszewski BA et al (1986) Calculations of flow resistance in the juxtacanalicular meshwork. Invest Ophthalmol Vis Sci 27:1741–1750PubMedGoogle Scholar
  8. 8.
    Seibold LK, Soohoo JR, Ammar DA, Kahook MY (2013) Preclinical investigation of ab interno trabeculectomy using a novel dual-blade device. Am J Ophthalmol 155:524–529.e2CrossRefPubMedGoogle Scholar
  9. 9.
    Rainer G, Menapace R, Findl O et al (2001) Intraocular pressure rise after small incision cataract surgery: a randomised intraindividual comparison of two dispersive viscoelastic agents. Br J Ophthalmol 85:139–142CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tranos PG, Wickremasinghe SS, Hildebrand D et al (2003) Same-day versus first-day review of intraocular pressure after uneventful phacoemulsification. J Cataract Refract Surg 29:508–512CrossRefPubMedGoogle Scholar
  11. 11.
    Wang C, Dang Y, Waxman S et al (2017) Angle stability and outflow in dual blade ab interno trabeculectomy with active versus passive chamber management. PLoS One 12:e0177238CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Loewen RT, Brown EN, Scott G et al (2016) Quantification of focal outflow enhancement using differential canalograms. Invest Ophthalmol Vis Sci 57:2831–2838CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dang Y, Waxman S, Wang C et al (2017) Rapid learning curve assessment in an ex vivo training system for microincisional glaucoma surgery. Sci Rep 7:1605CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Loewen RT, Brown EN, Roy P et al (2016) Regionally discrete aqueous humor outflow quantification using fluorescein canalograms. PLoS One 11:e0151754CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Parikh HA, Loewen RT, Roy P et al (2016) Differential canalograms detect outflow changes from trabecular micro-bypass stents and ab interno trabeculectomy. Sci Rep 6:34705CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hays CL, Gulati V, Fan S et al (2014) Improvement in outflow facility by two novel microinvasive glaucoma surgery implants. Invest Ophthalmol Vis Sci 55:1893–1900CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dang Y, Waxman S, Wang C et al (2017) Freeze-thaw decellularization of the trabecular meshwork in an ex vivo eye perfusion model. PeerJ 5:e3629CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gulati V, Fan S, Hays CL et al (2013) A novel 8-mm Schlemm’s canal scaffold reduces outflow resistance in a human anterior segment perfusion model. Invest Ophthalmol Vis Sci 54:1698–1704CrossRefPubMedGoogle Scholar
  19. 19.
    Camras LJ, Yuan F, Fan S et al (2012) A novel Schlemm’s canal scaffold increases outflow facility in a human anterior segment perfusion model. Invest Ophthalmol Vis Sci 53:6115–6121CrossRefPubMedGoogle Scholar
  20. 20.
    Dang Y, Waxman S, Wang C et al (2018) A porcine ex vivo model of pigmentary glaucoma. Sci Rep 8.  https://doi.org/10.1038/s41598-018-23861-x
  21. 21.
    Kaplowitz K, Bussel II, Honkanen R, et al (2016) Review and meta-analysis of ab-interno trabeculectomy outcomes. Br J Ophthalmol 100:594–600Google Scholar
  22. 22.
    Bhartiya S, Ichhpujani P, Shaarawy T (2015) Surgery on the trabecular meshwork: histopathological evidence. J Curr Glaucoma Pract 9:51–61CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Greenwood MD, Seibold LK, Radcliffe NM et al (2017) Goniotomy with a single-use dual blade: short-term results. J Cataract Refract Surg 43:1197–1201CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang Z, Dhaliwal AS, Tseng H et al (2014) Outflow tract ablation using a conditionally cytotoxic feline immunodeficiency viral vector. Invest Ophthalmol Vis Sci 55:935–940CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bahler CK, Smedley GT, Zhou J, Johnson DH (2004) Trabecular bypass stents decrease intraocular pressure in cultured human anterior segments. Am J Ophthalmol 138:988–994CrossRefPubMedGoogle Scholar
  26. 26.
    McMenamin PG, Steptoe RJ (1991) Normal anatomy of the aqueous humour outflow system in the domestic pig eye. J Anat 178:65–77PubMedPubMedCentralGoogle Scholar
  27. 27.
    Loewen RT, Roy P, Park DB et al (2016) A porcine anterior segment perfusion and transduction model with direct visualization of the trabecular meshwork. Invest Ophthalmol Vis Sci 57:1338–1344CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Khaja HA, Hodge DO, Sit AJ (2008) Trabectome ablation arc clinical results and relation to intraocular pressure. Invest Ophthalmol Vis Sci 49:4191–4191Google Scholar
  29. 29.
    Hunter KS, Fjield T, Heitzmann H et al (2014) Characterization of micro-invasive trabecular bypass stents by ex vivo perfusion and computational flow modeling. Clin Ophthalmol 8:499–506PubMedPubMedCentralGoogle Scholar
  30. 30.
    Rhee DJ, Gupta M, Moncavage MB et al (2009) Idiopathic elevated episcleral venous pressure and open-angle glaucoma. Br J Ophthalmol 93:231–234CrossRefPubMedGoogle Scholar
  31. 31.
    Bigger JF (1975) Glaucoma with elevated episcleral venous pressure. South Med J 68:1444–1448CrossRefPubMedGoogle Scholar
  32. 32.
    Greenfield DS (2000) Glaucoma associated with elevated episcleral venous pressure. J Glaucoma 9:190–194CrossRefPubMedGoogle Scholar
  33. 33.
    Van de Velde S, Van Bergen T, Vandewalle E et al (2015) Rho kinase inhibitor AMA0526 improves surgical outcome in a rabbit model of glaucoma filtration surgery. Prog Brain Res 220:283–297CrossRefPubMedGoogle Scholar
  34. 34.
    Khaw PT, Chang L, Wong TT et al (2001) Modulation of wound healing after glaucoma surgery. Curr Opin Ophthalmol 12:143–148CrossRefPubMedGoogle Scholar
  35. 35.
    Dang Y, Wang C, Shah P et al (2018) Ocular hypotension, actin stress fiber disruption and phagocytosis increase by RKI-1447, a Rho-kinase inhibitor.  https://doi.org/10.20944/preprints201802.0026.v1
  36. 36.
    Dang Y, Loewen R, Parikh HA et al (2016) Gene transfer to the outflow tract. Exp Eye Res 044396Google Scholar
  37. 37.
    Waxman S, Loewen RT, Dang Y, et al (2017) High-resolution, three dimensional reconstruction of the outflow tract demonstrates segmental differences in cleared eyes. Researchgate preprint.  https://doi.org/10.13140/RG.2.2.27838.18243
  38. 38.
    Dang Y, Waxman S, Wang C, et al (2018) Intraocular pressure elevation precedes a phagocytosis decline in a model of pigmentary glaucoma. F1000Res 7.  https://doi.org/10.12688/f1000research.13797.1
  39. 39.
    Xin C, Chen X, Li M et al (2017) Imaging collector channel entrance with a new intraocular micro-probe swept-source optical coherence tomography. Acta Ophthalmol 95:602–607CrossRefPubMedGoogle Scholar
  40. 40.
    Pattabiraman PP, Inoue T, Rao PV (2015) Elevated intraocular pressure induces Rho GTPase mediated contractile signaling in the trabecular meshwork. Exp Eye Res 136:29–33CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mettu PS, Deng P-F, Misra UK et al (2004) Role of lysophospholipid growth factors in the modulation of aqueous humor outflow facility. Invest Ophthalmol Vis Sci 45:2263–2271CrossRefPubMedGoogle Scholar
  42. 42.
    Ramos RF, Stamer WD (2008) Effects of cyclic intraocular pressure on conventional outflow facility. Invest Ophthalmol Vis Sci 49:275–281CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lei Y, Stamer WD, Wu J, Sun X (2014) Endothelial nitric oxide synthase—related mechanotransduction changes in aged porcine angular aqueous plexus CellseNOS-related mechanotransduction changes. Invest Ophthalmol Vis Sci 55:8402–8408CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Giovingo M, Nolan M, McCarty R et al (2013) sCD44 overexpression increases intraocular pressure and aqueous outflow resistance. Mol Vis 19:2151–2164PubMedPubMedCentralGoogle Scholar
  45. 45.
    Camras LJ, Stamer WD, Epstein D et al (2012) Differential effects of trabecular meshwork stiffness on outflow facility in normal human and porcine eyes. Invest Ophthalmol Vis Sci 53:5242–5250CrossRefPubMedGoogle Scholar
  46. 46.
    Lei Y, Stamer WD, Wu J, Sun X (2013) Oxidative stress impact on barrier function of porcine angular aqueous plexus cell monolayers. Invest Ophthalmol Vis Sci 54:4827–4835CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lei Y, Stamer WD, Wu J, Sun X (2014) Cell senescence reduced the mechanotransduction sensitivity of porcine angular aqueous plexus cells to elevation of pressure effect of pressure on AAP cells. Invest Ophthalmol Vis Sci 55:2324–2328CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yalong Dang
    • 1
  • Chao Wang
    • 1
    • 2
  • Priyal Shah
    • 1
    • 3
  • Susannah Waxman
    • 1
  • Ralitsa T. Loewen
    • 1
  • Ying Hong
    • 1
  • Hamed Esfandiari
    • 1
  • Nils A. Loewen
    • 1
    Email author
  1. 1.Department of OphthalmologyUniversity of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Department of Ophthalmology, Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China
  3. 3.Institute of Ophthalmology and Visual ScienceRutgers New Jersey Medical SchoolNewarkUSA

Personalised recommendations