Advertisement

Optical coherence tomography angiography: a review of current and future clinical applications

  • Marcus AngEmail author
  • Anna C. S. Tan
  • Chui Ming Gemmy Cheung
  • Pearse A. Keane
  • Rosa Dolz-Marco
  • Chelvin C. A. Sng
  • Leopold Schmetterer
Review Article

Abstract

Optical coherence tomography angiography is a non-invasive imaging technique that now allows for simultaneous in vivo imaging of the morphology as well as the vasculature in the eye. In this review, we provide an update on the existing clinical applications of optical coherence tomography angiography technology from the anterior to posterior segment of the eye. We also discuss the limitations of optical coherence tomography angiography technology, as well as the caveats to the interpretation of images. As current optical coherence tomography angiography systems are optimized for the retina, most studies have focused on interpreting images from conditions such as age related macular degeneration and retinal vascular diseases. However, the interpretation of these optical coherence tomography angiography images should be taken in consideration with other multi-modal imaging to overcome the limitations of each technique. In addition, there are a growing variety of clinical applications for optical coherence tomography angiography imaging in optic nerve head evaluation for glaucoma and optic neuropathies. Further developments in anterior optical coherence tomography angiography have now allowed for evaluation of anterior segment pathology such as glaucoma, ocular surface diseases, corneal vascularisation, and abnormal iris vasculature. Future developments in software could allow for improved segmentation and image resolution with automated measurements and analysis.

Keywords

Optical coherence tomography Angiography Vascularisation Retina Glaucoma Cornea 

Notes

Compliance with ethical standards

Conflict of interest

Dr. Gemmy Cheung serves on the speaker bureaus for Topcon and Zeiss. Dr. Pearse Keane has received speaker fees from Heidelberg Engineering, Topcon, Zeiss, Haag-Streit, Allergan, Novartis, and Bayer. He has served on advisory boards for Novartis and Bayer, and is an external consultant for DeepMind and Optos. Dr. Marcus Ang is a speaker for Zeiss, Nidek, Allergan, Santen and Johnson & Johnson Vision.

Ethical approval

For this type of study formal consent is not required.

Supplementary material

417_2017_3896_Fig6_ESM.gif (235 kb)
Supplementary Fig. 1

Wide-field optical coherence tomography angiography images of a case of ischemic branch retinal vein occlusion showed areas of flow signal voids superior temporal to the macula corresponding to areas of ischemia. The image was obtained with full-retina segmentation and a montage of multiple smaller-field en face optical coherence tomography angiography images to create a wide-field image without sacrificing resolution and detail. The foveal avascular zone in this case was not enlarged and did not show any macular ischemia. (GIF 235 kb)

417_2017_3896_MOESM1_ESM.tiff (1.3 mb)
High resolution image (TIFF 1365 kb)
417_2017_3896_Fig7_ESM.gif (421 kb)
Supplementary Fig. 2

Cross-sectional (bottom left) and en face optical coherence tomography (top left) of an eye with macular telangiectasia type 2 showing the presence of intra-retina cystic changes. En face (top right) and cross-sectional optical coherence tomography angiography (bottom right) showing stellate arrangement of perifoveal telangectatic vessels temporal to the fovea that may be due to contraction of the tissue due to degenerative changes. (GIF 421 kb)

417_2017_3896_MOESM2_ESM.tiff (19.4 mb)
High resolution image (TIFF 19886 kb)
417_2017_3896_Fig8_ESM.gif (239 kb)
Supplementary Fig. 3

Indocyanine green angiography (ICGA) (top left), structural optical coherence tomography (OCT) image (bottom left), en face (top right) and cross-sectional OCT angiography (OCTA) images of eyes with polypoidal choroidal vasculopathy. Polyps (yellow circle) showing hyperreflectivity within a peaked pigment epithelial detachment (PED) with a corresponding focal abnormal flow signal seen on cross-sectional OCTA, on ICGA the polyps show extensive hypercyanescence but have only the patchy corresponding high flow signals on en face OCTA. The adjacent branching vascular network (blue arrows) is seen as a shallow, irregular PED with abnormal flow signal on cross-sectional OCTA and a corresponding high flow network of vessels seen on en face OCTA similar to the appearance on ICGA. (GIF 238 kb)

417_2017_3896_MOESM3_ESM.tiff (10.9 mb)
High resolution image (TIFF 11111 kb)
417_2017_3896_Fig9_ESM.gif (1.1 mb)
Supplementary Fig. 4

Optical coherence tomography angiography (OCTA) images of secondary causes of neovascularization (NV). Left column: Type 1 NV related to chronic central serous chorioretinopathy, seen on cross-sectional OCTA (bottom row) as flow signal within a shallow irregular pigment epithelial detachment, with a thick choroid, and corresponding abnormal flow signal seen on en face OCTA (top row) with projection artifact removed, and imaged on a depth color encoded en face OCTA image with the NV seen in blue (middle row). Middle column: Myopic NV seen as an abnormal flow signal on cross-sectional OCTA (bottom row), with a corresponding abnormal flow signal on en face OCTA (top row) with the projection artifact removed and depth color encoded en face OCTA with the NV appearing blue-green. Right column: Type 2 NV secondary to inflammatory diseases seen as abnormal flow signal in areas of subretinal hyperreflective material on cross-sectional OCTA (bottom row), and a corresponding flow signal on a 6 × 6 mm en face OCTA image (top row) showing a larger imaged area with less detail while a magnified view of the NV on a 3x3 mm en face OCTA image (middle row) showed greater detail of the NV. (GIF 1127 kb)

417_2017_3896_MOESM4_ESM.tiff (30.8 mb)
High resolution image (TIFF 31583 kb)

References

  1. 1.
    Drexler W, Liu M, Kumar A, Kamali T, Unterhuber A, Leitgeb RA (2014) Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt 19:071412.  https://doi.org/10.1117/1.JBO.19.7.071412 CrossRefPubMedGoogle Scholar
  2. 2.
    Leitgeb RA, Werkmeister RM, Blatter C, Schmetterer L (2014) Doppler optical coherence tomography. Prog Retin Eye Res 41:26–43.  https://doi.org/10.1016/j.preteyeres.2014.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chen CL, Wang RK (2017) Optical coherence tomography based angiography [invited]. Biomed Opt Express 8:1056–1082.  https://doi.org/10.1364/BOE.8.001056 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gao SS, Jia Y, Zhang M, Su JP, Liu G, Hwang TS, Bailey ST, Huang D (2016) Optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:OCT27–OCT36.  https://doi.org/10.1167/iovs.15-19043 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhang A, Zhang Q, Chen CL, Wang RK (2015) Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt 20:100901.  https://doi.org/10.1117/1.JBO.20.10.100901 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Keane PA, Sadda SR (2014) Retinal imaging in the twenty-first century: state of the art and future directions. Ophthalmology 121:2489–2500.  https://doi.org/10.1016/j.ophtha.2014.07.054 CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang M, Hwang TS, Campbell JP, Bailey ST, Wilson DJ, Huang D, Jia Y (2016) Projection-resolved optical coherence tomographic angiography. Biomed Opt Express 7:816–828.  https://doi.org/10.1364/BOE.7.000816 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wylegala A, Teper S, Dobrowolski D, Wylegala E (2016) Optical coherence angiography: a review. Medicine (Baltimore) 95:e4907.  https://doi.org/10.1097/MD.0000000000004907 CrossRefGoogle Scholar
  9. 9.
    Tan ACS, Tan GS, Denniston AK, Keane PA, Ang M, Milea D, Chakravarthy U, Cheung CMG (2017) An overview of the clinical applications of optical coherence tomography angiography. Eye (Lond).  https://doi.org/10.1038/eye.2017.181
  10. 10.
    Koustenis A Jr, Harris A, Gross J, Januleviciene I, Shah A, Siesky B (2017) Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br J Ophthalmol 101:16–20.  https://doi.org/10.1136/bjophthalmol-2016-309389 CrossRefPubMedGoogle Scholar
  11. 11.
    Ferrara D (2016) Image artifacts in optical coherence tomography angiography. Clin Exp Ophthalmol 44:367–368.  https://doi.org/10.1111/ceo.12781 CrossRefPubMedGoogle Scholar
  12. 12.
    Spaide RF, Fujimoto JG, Waheed NK (2015) Image Artifacts in optical coherence tomography angiography. Retina 35:2163–2180.  https://doi.org/10.1097/IAE.0000000000000765 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dolz-Marco R, Freund KB (2017) Directional changes in tissue reflectivity may influence flow detection on optical coherence tomography angiography. Retina.  https://doi.org/10.1097/IAE.0000000000001656
  14. 14.
    Soares M, Neves C, Marques IP, Pires I, Schwartz C, Costa MA, Santos T, Durbin M, Cunha-Vaz J (2017) Comparison of diabetic retinopathy classification using fluorescein angiography and optical coherence tomography angiography. Br J Ophthalmol 101:62–68.  https://doi.org/10.1136/bjophthalmol-2016-309424 CrossRefPubMedGoogle Scholar
  15. 15.
    Balaratnasingam C, Inoue M, Ahn S, McCann J, Dhrami-Gavazi E, Yannuzzi LA, Freund KB (2016) Visual acuity is correlated with the area of the Foveal Avascular zone in diabetic retinopathy and retinal vein occlusion. Ophthalmology 123:2352–2367.  https://doi.org/10.1016/j.ophtha.2016.07.008 CrossRefPubMedGoogle Scholar
  16. 16.
    Samara WA, Shahlaee A, Adam MK, Khan MA, Chiang A, Maguire JI, Hsu J, Ho AC (2017) Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity. Ophthalmology 124:235–244.  https://doi.org/10.1016/j.ophtha.2016.10.008 CrossRefPubMedGoogle Scholar
  17. 17.
    de Carlo TE, Chin AT, Bonini Filho MA, Adhi M, Branchini L, Salz DA, Baumal CR, Crawford C, Reichel E, Witkin AJ, Duker JS, Waheed NK (2015) Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina 35:2364–2370.  https://doi.org/10.1097/IAE.0000000000000882 CrossRefPubMedGoogle Scholar
  18. 18.
    Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y (2015) Enlargement of Foveal Avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 35:2377–2383.  https://doi.org/10.1097/IAE.0000000000000849 CrossRefPubMedGoogle Scholar
  19. 19.
    Parravano M, De Geronimo D, Scarinci F, Querques L, Virgili G, Simonett JM, Varano M, Bandello F, Querques G (2017) Diabetic microaneurysms internal reflectivity on spectral-domain optical coherence tomography and optical coherence tomography angiography detection. Am J Ophthalmol 179:90–96.  https://doi.org/10.1016/j.ajo.2017.04.021 CrossRefPubMedGoogle Scholar
  20. 20.
    Matet A, Daruich A, Dirani A, Ambresin A, Behar-Cohen F (2016) Macular Telangiectasia type 1: capillary density and microvascular abnormalities assessed by optical coherence tomography angiography. Am J Ophthalmol 167:18–30.  https://doi.org/10.1016/j.ajo.2016.04.005 CrossRefPubMedGoogle Scholar
  21. 21.
    Giuffre C, Carnevali A, Cicinelli MV, Querques L, Querques G, Bandello F (2017) Optical coherence tomography angiography of venous loops in diabetic retinopathy. Ophthalmic Surg Lasers Imaging Retina 48:518–520.  https://doi.org/10.3928/23258160-20170601-13 CrossRefPubMedGoogle Scholar
  22. 22.
    Hwang TS, Jia Y, Gao SS, Bailey ST, Lauer AK, Flaxel CJ, Wilson DJ, Huang D (2015) Optical coherence tomography angiography features of diabetic retinopathy. Retina 35:2371–2376.  https://doi.org/10.1097/IAE.0000000000000716 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    de Carlo TE, Bonini Filho MA, Baumal CR, Reichel E, Rogers A, Witkin AJ, Duker JS, Waheed NK (2016) Evaluation of Preretinal neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 47:115–119.  https://doi.org/10.3928/23258160-20160126-03 CrossRefPubMedGoogle Scholar
  24. 24.
    Spaide RF, Marco RD, Yannuzzi LA (2017) Vascular distortion and dragging related to apparent tissue contraction in macular Telangiectasis type 2. Retina.  https://doi.org/10.1097/IAE.0000000000001694
  25. 25.
    Zhang Q, Wang RK, Chen CL, Legarreta AD, Durbin MK, An L, Sharma U, Stetson PF, Legarreta JE, Roisman L, Gregori G, Rosenfeld PJ (2015) Swept source optical coherence tomography angiography of Neovascular macular Telangiectasia type 2. Retina 35:2285–2299.  https://doi.org/10.1097/IAE.0000000000000840 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sulzbacher F, Pollreisz A, Kaider A, Kickinger S, Sacu S, Schmidt-Erfurth U, Vienna Eye Study C (2017) Identification and clinical role of choroidal neovascularization characteristics based on optical coherence tomography angiography. Acta Ophthalmol 95:414–420.  https://doi.org/10.1111/aos.13364 CrossRefPubMedGoogle Scholar
  27. 27.
    Inoue M, Jung JJ, Balaratnasingam C, Dansingani KK, Dhrami-Gavazi E, Suzuki M, de Carlo TE, Shahlaee A, Klufas MA, El Maftouhi A, Duker JS, Ho AC, Maftouhi MQ, Sarraf D, Freund KB, Group C-S (2016) A comparison between optical coherence tomography angiography and Fluorescein angiography for the imaging of type 1 neovascularization. Invest Ophthalmol Vis Sci 57:OCT314–OCT323.  https://doi.org/10.1167/iovs.15-18900 CrossRefPubMedGoogle Scholar
  28. 28.
    Kuehlewein L, Bansal M, Lenis TL, Iafe NA, Sadda SR, Bonini Filho MA, De Carlo TE, Waheed NK, Duker JS, Sarraf D (2015) Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration. Am J Ophthalmol 160(739–748):e732.  https://doi.org/10.1016/j.ajo.2015.06.030 Google Scholar
  29. 29.
    Tan AC, Dansingani KK, Yannuzzi LA, Sarraf D, Freund KB (2017) Type 3 neovascularization imaged with cross-sectional and en face optical coherence tomography angiography. Retina 37:234–246.  https://doi.org/10.1097/IAE.0000000000001343 CrossRefPubMedGoogle Scholar
  30. 30.
    Cheung CM, Yanagi Y, Mohla A, Lee SY, Mathur R, Chan CM, Yeo I, Wong TY (2016) Characterization and differentiation of Polypoidal Choroidal vasculopathy using swept source optical coherence tomography angiography. Retina.  https://doi.org/10.1097/IAE.0000000000001391
  31. 31.
    Tanaka K, Mori R, Kawamura A, Nakashizuka H, Wakatsuki Y, Yuzawa M (2017) Comparison of OCT angiography and indocyanine green angiographic findings with subtypes of polypoidal choroidal vasculopathy. Br J Ophthalmol 101:51–55.  https://doi.org/10.1136/bjophthalmol-2016-309264 CrossRefPubMedGoogle Scholar
  32. 32.
    Srour M, Querques G, Souied EH (2016) Optical coherence tomography angiography of idiopathic Polypoidal Choroidal vasculopathy. Dev Ophthalmol 56:71–76.  https://doi.org/10.1159/000442781 CrossRefPubMedGoogle Scholar
  33. 33.
    Querques L, Giuffre C, Corvi F, Zucchiatti I, Carnevali A, De Vitis LA, Querques G, Bandello F (2017) Optical coherence tomography angiography of myopic choroidal neovascularisation. Br J Ophthalmol 101:609–615.  https://doi.org/10.1136/bjophthalmol-2016-309162 CrossRefPubMedGoogle Scholar
  34. 34.
    Bousquet E, Bonnin S, Mrejen S, Krivosic V, Tadayoni R, Gaudric A (2017) Optical coherence tomography angiography of flat irregular pigment epithelium detachment in chronic central serous Chorioretinopathy. Retina.  https://doi.org/10.1097/IAE.0000000000001580
  35. 35.
    Levison AL, Baynes KM, Lowder CY, Kaiser PK, Srivastava SK (2017) Choroidal neovascularisation on optical coherence tomography angiography in punctate inner choroidopathy and multifocal choroiditis. Br J Ophthalmol 101:616–622.  https://doi.org/10.1136/bjophthalmol-2016-308806 CrossRefPubMedGoogle Scholar
  36. 36.
    Takayama K, Ito Y, Kaneko H, Kataoka K, Sugita T, Maruko R, Hattori K, Ra E, Haga F, Terasaki H (2017) Comparison of indocyanine green angiography and optical coherence tomographic angiography in polypoidal choroidal vasculopathy. Eye 31:45–52.  https://doi.org/10.1038/eye.2016.232 CrossRefPubMedGoogle Scholar
  37. 37.
    Cherecheanu AP, Garhofer G, Schmidl D, Werkmeister R, Schmetterer L (2013) Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol 13:36–42.  https://doi.org/10.1016/j.coph.2012.09.003 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, Kraus MF, Fujimoto JG, Huang D (2014) Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 121:1322–1332.  https://doi.org/10.1016/j.ophtha.2014.01.021 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Liu L, Jia Y, Takusagawa HL, Pechauer AD, Edmunds B, Lombardi L, Davis E, Morrison JC, Huang D (2015) Optical coherence tomography angiography of the Peripapillary retina in glaucoma. JAMA Ophthalmol 133:1045–1052.  https://doi.org/10.1001/jamaophthalmol.2015.2225 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S, Saunders LJ, Belghith A, Manalastas PI, Medeiros FA, Weinreb RN (2016) Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology 123:2498–2508.  https://doi.org/10.1016/j.ophtha.2016.08.041 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Akil H, Huang AS, Francis BA, Sadda SR, Chopra V (2017) Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS One 12:e0170476.  https://doi.org/10.1371/journal.pone.0170476PONE-D-16-21744 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ang M, Sng C, Milea D (2016) Optical coherence tomography angiography in dural carotid-cavernous sinus fistula. BMC Ophthalmol 16:93.  https://doi.org/10.1186/s12886-016-0278-110.1186/s12886-016-0278-1 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sharma S, Ang M, Najjar RP, Sng C, Cheung CY, Rukmini AV, Schmetterer L, Milea D (2017) Optical coherence tomography angiography in acute non-arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol.  https://doi.org/10.1136/bjophthalmol-2016-309245
  44. 44.
    Ghasemi Falavarjani K, Tian JJ, Akil H, Garcia GA, Sadda SR, Sadun AA (2016) Swept-source optical coherence tomography angiography of the optic disk in optic neuropathy. Retina 36(Suppl 1):S168–S177.  https://doi.org/10.1097/IAE.0000000000001259 CrossRefPubMedGoogle Scholar
  45. 45.
    Wang X, Jia Y, Spain R, Potsaid B, Liu JJ, Baumann B, Hornegger J, Fujimoto JG, Wu Q, Huang D (2014) Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthalmol 98:1368–1373.  https://doi.org/10.1136/bjophthalmol-2013-304547 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Higashiyama T, Nishida Y, Ohji M (2017) Optical coherence tomography angiography in eyes with good visual acuity recovery after treatment for optic neuritis. PLoS One 12:e0172168.  https://doi.org/10.1371/journal.pone.0172168 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ang M, Cai Y, Shahipasand S, Sim DA, Keane PA, Sng CC, Egan CA, Tufail A, Wilkins MR (2015) En face optical coherence tomography angiography for corneal neovascularisation. Br J Ophthalmol.  https://doi.org/10.1136/bjophthalmol-2015-307338
  48. 48.
    Ang M, Sim DA, Keane PA, Sng CC, Egan CA, Tufail A, Wilkins MR (2015) Optical coherence tomography angiography for anterior segment vasculature imaging. Ophthalmology 122:1740–1747.  https://doi.org/10.1016/j.ophtha.2015.05.017 CrossRefPubMedGoogle Scholar
  49. 49.
    Ang M, Cai Y, Tan AC (2016) Swept source optical coherence tomography angiography for contact lens-related corneal vascularization. J Ophthalmol 2016:9685297.  https://doi.org/10.1155/2016/9685297 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ang M, Devarajan K, Das S, Stanzel T, Tan A, Girard M, Schmeterer L, Mehta J (2017) Comparison of anterior segment optical coherence tomography angiography systems for corneal vascularisation. Br J Ophthalmol.  https://doi.org/10.1136/bjophthalmol-2017-311072
  51. 51.
    Ang M, Cai Y, MacPhee B, Sim DA, Keane PA, Sng CC, Egan CA, Tufail A, Larkin DF, Wilkins MR (2016) Optical coherence tomography angiography and indocyanine green angiography for corneal vascularisation. Br J Ophthalmol.  https://doi.org/10.1136/bjophthalmol-2015-307706
  52. 52.
    Ang M, Cai Y, Shahipasand S, Sim DA, Keane PA, Sng CC, Egan CA, Tufail A, Wilkins MR (2016) En face optical coherence tomography angiography for corneal neovascularisation. Br J Ophthalmol 100:616–621.  https://doi.org/10.1136/bjophthalmol-2015-307338 CrossRefPubMedGoogle Scholar
  53. 53.
    Girard MJ, Ang M, Chung CW, Farook M, Strouthidis N, Mehta JS, Mari JM (2015) Enhancement of corneal visibility in optical coherence tomography images using corneal adaptive compensation. Transl Vis Sci Technol 4:3.  https://doi.org/10.1167/tvst.4.3.3 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Chung CW, Ang M, Farook M, Strouthidis NG, Mehta JS, Mari JM, Girard MJ (2016) Enhancement of corneal visibility in optical coherence tomography images with corneal Opacification. Transl Vis Sci Technol 5:3.  https://doi.org/10.1167/tvst.5.5.3 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Cai Y, Alio Del Barrio JL, Wilkins MR, Ang M (2017) Serial optical coherence tomography angiography for corneal vascularization. Graefes Arch Clin Exp Ophthalmol 255:135–139.  https://doi.org/10.1007/s00417-016-3505-9 CrossRefPubMedGoogle Scholar
  56. 56.
    Spiteri N, Romano V, Zheng Y, Yadav S, Dwivedi R, Chen J, Ahmad S, Willoughby CE, Kaye SB (2015) Corneal angiography for guiding and evaluating fine-needle diathermy treatment of corneal neovascularization. Ophthalmology 122:1079–1084.  https://doi.org/10.1016/j.ophtha.2015.02.012 CrossRefPubMedGoogle Scholar
  57. 57.
    Guex-Crosier Y, Durig J (2003) Anterior segment indocyanine green angiography in anterior scleritis and episcleritis. Ophthalmology 110:1756–1763.  https://doi.org/10.1016/S0161-6420(03)00567-0 CrossRefPubMedGoogle Scholar
  58. 58.
    Watson PG (1987) Anterior segment fluorescein angiography in the surgery of immunologically induced corneal and scleral destructive disorders. Ophthalmology 94:1452–1464CrossRefPubMedGoogle Scholar
  59. 59.
    Cole ED, Ferrara D, Novais EA, Louzada RN, Waheed NK (2016) Clinical trial endpoints for optical coherence tomography angiography in Neovascular age-related macular degeneration. Retina 36(Suppl 1):S83–S92.  https://doi.org/10.1097/IAE.0000000000001338 CrossRefPubMedGoogle Scholar
  60. 60.
    Spaide RF, Curcio CA (2017) Evaluation of segmentation of the superficial and deep vascular layers of the retina by optical coherence tomography angiography instruments in normal eyes. JAMA Ophthalmol 135:259–262.  https://doi.org/10.1001/jamaophthalmol.2016.5327 CrossRefPubMedGoogle Scholar
  61. 61.
    Ploner SB, Moult EM, Choi W, Waheed NK, Lee B, Novais EA, Cole ED, Potsaid B, Husvogt L, Schottenhamml J, Maier A, Rosenfeld PJ, Duker JS, Hornegger J, Fujimoto JG (2016) TOWARD QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY: visualizing blood flow speeds in ocular pathology using variable Interscan time analysis. Retina 36(Suppl 1):S118–S126.  https://doi.org/10.1097/IAE.0000000000001328 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Singapore National Eye CentreSingaporeSingapore
  2. 2.Duke–NUS Medical SchoolSingaporeSingapore
  3. 3.Singapore Eye Research InstituteSingaporeSingapore
  4. 4.Moorfields Eye HospitalLondonUK
  5. 5.Institute of OphthalmologyUniversity College LondonLondonUK
  6. 6.FISABIO Ophthalmic MedicineValenciaSpain
  7. 7.National University Health SystemSingaporeSingapore
  8. 8.Lee Kong Medical SchoolNanyang Technological UniversitySingaporeSingapore
  9. 9.Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
  10. 10.Department of Clinical PharmacologyMedical University of ViennaViennaAustria

Personalised recommendations