Transplantation of IL-10-transfected endothelial progenitor cells improves retinal vascular repair via suppressing inflammation in diabetic rats

  • Ying Wang
  • Lingling Fan
  • Xiangda Meng
  • Feng Jiang
  • Qingzhong Chen
  • Zhuhong Zhang
  • Hua YanEmail author
Basic Science



We aimed to evaluate the effect of IL-10 gene transfection on endothelial progenitor cells (EPCs) under inflammatory conditions, and explore the therapeutic potential of IL-10-transfected EPC transplantation on nonproliferative diabetic retinopathy (NPDR).


Lentivirus vectors encoding IL-10 were constructed and introduced into EPCs isolated from rat bone marrow. After exposure to recombinant rat TNF-α, abilities of nontransfected EPCs (non-EPCs) and EPCs transfected with normal control lentivirus (EPCs-GFP) or IL-10 expressing lentivirus (EPCs-IL-10-GFP) were assessed, including migration, adhesion, and tube formation. IL-10 production by EPCs-IL-10-GFP was determined by ELISA. Following 12 weeks after establishment of diabetes, diabetic rats were randomly injected with non-EPCs, EPCs-GFP, or EPCs-IL-10-GFP via tail vein. Expression of inflammatory factors and factors associated with nuclear factor-kappa B (NF-kB) signal pathway, retinal histological analysis, and retinal vascular permeability were assessed 2 weeks after transplantation.


The detrimental effects of TNF-ɑ on the abilities of EPCs were significantly attenuated in EPCs-IL-10-GFP compared with non-EPCs and EPCs-GFP. The concentration of IL-10 in the EPCs-IL-10-GFP group was significantly higher than the non-EPCs and EPCs-GFP groups. Additionally, transplantation of EPCs-IL-10-GFP significantly inhibited inflammatory factors expression and activation of NF-kB signal pathway, improved retinal histological changes, and attenuated retinal vascular permeability.


In conclusion, transplantation of IL-10-transfected EPCs significantly improved EPCs-mediated retinal vascular repair and subsequently suppressed NPDR progression. This was associated with inflammation suppression, at least partly via inhibiting the NF-kB signal pathway. Transplantation of IL-10-transfected EPCs may be a new strategy for treatment of NPDR.


IL-10 Endothelial progenitor cells Nonproliferative diabetic retinopathy Vascular repair Inflammation 



This study was supported by Natural Science Foundation of Tianjin (Grant Numbers 12JCYBJC33900 and 14JCYBJC28000) and National Natural Science Foundation of China (Grant numbers 81371038 and 91442124).

Compliance with ethical standards


This study was supported by Natural Science Foundation of Tianjin (Grant Numbers 12JCYBJC33900 and 14JCYBJC28000) and National Natural Science Foundation of China (Grant numbers 81371038 and 91442124). The sponsor had no role in the design or conduct of this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval

The Association for Research in Vision and Ophthalmology statement for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of Animal Care and Use Committee of Tianjin Medical University.


  1. 1.
    Kempen JH, O’Colmain BJ, Leske MC, Haffner SM, Klein R, Moss SE, Taylor HR, Hamman RF (2004) The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol 122(4):552–563. doi: 10.1001/archopht.122.4.552 CrossRefPubMedGoogle Scholar
  2. 2.
    Klein BE (2007) Overview of epidemiologic studies of diabetic retinopathy. Ophthalmic Epidemiol 14(4):179–183. doi: 10.1080/09286580701396720 CrossRefPubMedGoogle Scholar
  3. 3.
    Tang J, Kern TS (2011) Inflammation in diabetic retinopathy. Prog Retin Eye Res 30(5):343–358. doi: 10.1016/j.preteyeres.2011.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhang W, Liu H, Rojas M, Caldwell RW, Caldwell RB (2011) Anti-inflammatory therapy for diabetic retinopathy. Immunotherapy 3(5):609–628. doi: 10.2217/imt.11.24 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rangasamy S, McGuire PG, Das A (2012) Diabetic retinopathy and inflammation: novel therapeutic targets. Middle East Afr J Ophthalmol 19(1):52–59. doi: 10.4103/0974-9233.92116 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kastelan S, Tomic M, Gverovic Antunica A, Salopek Rabatic J, Ljubic S (2013) Inflammation and pharmacological treatment in diabetic retinopathy. Mediat Inflamm 2013:213130. doi: 10.1155/2013/213130 Google Scholar
  7. 7.
    Long J, Wang S, Zhang Y, Liu X, Zhang H, Wang S (2013) The therapeutic effect of vascular endothelial growth factor gene- or heme oxygenase-1 gene-modified endothelial progenitor cells on neovascularization of rat hindlimb ischemia model. J Vasc Surg 58(3):756.e2–765.e2. doi: 10.1016/j.jvs.2012.11.096 CrossRefGoogle Scholar
  8. 8.
    Yu P, Li Q, Liu Y, Zhang J, Seldeen K, Pang M (2015) Pro-angiogenic efficacy of transplanting endothelial progenitor cells for treating hindlimb ischemia in hyperglycemic rabbits. J Diabetes Complicat 29(1):13–19. doi: 10.1016/j.jdiacomp.2014.09.003 CrossRefPubMedGoogle Scholar
  9. 9.
    Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM, Asahara T (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103(5):634–637CrossRefPubMedGoogle Scholar
  10. 10.
    Sen S, Merchan J, Dean J, Ii M, Gavin M, Silver M, Tkebuchava T, Yoon YS, Rasko JE, Aikawa R (2010) Autologous transplantation of endothelial progenitor cells genetically modified by adeno-associated viral vector delivering insulin-like growth factor-1 gene after myocardial infarction. Hum Gene Ther 21(10):1327–1334. doi: 10.1089/hum.2010.006 CrossRefPubMedGoogle Scholar
  11. 11.
    Asai J, Takenaka H, Ii M, Asahi M, Kishimoto S, Katoh N, Losordo DW (2013) Topical application of ex vivo expanded endothelial progenitor cells promotes vascularisation and wound healing in diabetic mice. Int Wound J 10(5):527–533. doi: 10.1111/j.1742-481X.2012.01010.x CrossRefPubMedGoogle Scholar
  12. 12.
    Brunner S, Schernthaner GH, Satler M, Elhenicky M, Hoellerl F, Schmid-Kubista KE, Zeiler F, Binder S, Schernthaner G (2009) Correlation of different circulating endothelial progenitor cells to stages of diabetic retinopathy: first in vivo data. Invest Ophthalmol Vis Sci 50(1):392–398. doi: 10.1167/iovs.08-1748 CrossRefPubMedGoogle Scholar
  13. 13.
    Brunner S, Hoellerl F, Schmid-Kubista KE, Zeiler F, Schernthaner G, Binder S, Schernthaner GH (2011) Circulating angiopoietic cells and diabetic retinopathy in type 2 diabetes mellitus, with or without macrovascular disease. Invest Ophthalmol Vis Sci 52(7):4655–4662. doi: 10.1167/iovs.10-6520 CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang W, Yan H (2013) Dysfunction of circulating endothelial progenitor cells in type 1 diabetic rats with diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 251(4):1123–1131. doi: 10.1007/s00417-013-2267-x CrossRefPubMedGoogle Scholar
  15. 15.
    Feng Y, van Eck M, Van Craeyveld E, Jacobs F, Carlier V, Van Linthout S, Erdel M, Tjwa M, De Geest B (2009) Critical role of scavenger receptor-BI-expressing bone marrow-derived endothelial progenitor cells in the attenuation of allograft vasculopathy after human apo A-I transfer. Blood 113(3):755–764. doi: 10.1182/blood-2008-06-161794 CrossRefPubMedGoogle Scholar
  16. 16.
    Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765. doi: 10.1146/annurev.immunol.19.1.683 CrossRefPubMedGoogle Scholar
  17. 17.
    Sziksz E, Pap D, Lippai R, Beres NJ, Fekete A, Szabo AJ, Vannay A (2015) Fibrosis related inflammatory mediators: role of the IL-10 cytokine family. Mediat Inflamm 2015:764641. doi: 10.1155/2015/764641 CrossRefGoogle Scholar
  18. 18.
    Zimmermann O, Homann JM, Bangert A, Muller AM, Hristov G, Goeser S, Wiehe JM, Zittrich S, Rottbauer W, Torzewski J, Pfitzer G, Katus HA, Kaya Z (2012) Successful use of mRNA-nucleofection for overexpression of interleukin-10 in murine monocytes/macrophages for anti-inflammatory therapy in a murine model of autoimmune myocarditis. J Am Heart Assoc 1(6), e003293. doi: 10.1161/jaha.112.003293 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kobbe P, Lichte P, Schreiber H, Reiss LK, Uhlig S, Pape HC, Pfeifer R (2012) Inhalative IL-10 attenuates pulmonary inflammation following hemorrhagic shock without major alterations of the systemic inflammatory response. Mediat Inflamm 2012:512974. doi: 10.1155/2012/512974 CrossRefGoogle Scholar
  20. 20.
    Verma SK, Krishnamurthy P, Barefield D, Singh N, Gupta R, Lambers E, Thal M, Mackie A, Hoxha E, Ramirez V, Qin G, Sadayappan S, Ghosh AK, Kishore R (2012) Interleukin-10 treatment attenuates pressure overload-induced hypertrophic remodeling and improves heart function via signal transducers and activators of transcription 3-dependent inhibition of nuclear factor-kappaB. Circulation 126(4):418–429. doi: 10.1161/circulationaha.112.112185 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lee JH, Lee W, Kwon OH, Kim JH, Kwon OW, Kim KH, Lim JB (2008) Cytokine profile of peripheral blood in type 2 diabetes mellitus patients with diabetic retinopathy. Ann Clin Lab Sci 38(4):361–367PubMedGoogle Scholar
  22. 22.
    Krishnamurthy P, Thal M, Verma S, Hoxha E, Lambers E, Ramirez V, Qin G, Losordo D, Kishore R (2011) Interleukin-10 deficiency impairs bone marrow-derived endothelial progenitor cell survival and function in ischemic myocardium. Circ Res 109(11):1280–1289. doi: 10.1161/circresaha.111.248369 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chen YH, Lin SJ, Lin FY, Wu TC, Tsao CR, Huang PH, Liu PL, Chen YL, Chen JW (2007) High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes 56(6):1559–1568. doi: 10.2337/db06-1103 CrossRefPubMedGoogle Scholar
  24. 24.
    Xu Q, Qaum T, Adamis AP (2001) Sensitive blood–retinal barrier breakdown quantitation using Evans blue. Invest Ophthalmol Vis Sci 42(3):789–794PubMedGoogle Scholar
  25. 25.
    Siqueira RC, Messias A, Voltarelli JC, Scott IU, Jorge R (2011) Intravitreal injection of autologous bone marrow-derived mononuclear cells for hereditary retinal dystrophy: a phase I trial. Retina 31(6):1207–1214. doi: 10.1097/IAE.0b013e3181f9c242 CrossRefPubMedGoogle Scholar
  26. 26.
    Wang S, Lu B, Girman S, Duan J, McFarland T, Zhang QS, Grompe M, Adamus G, Appukuttan B, Lund R (2010) Non-invasive stem cell therapy in a rat model for retinal degeneration and vascular pathology. PLoS One 5(2), e9200. doi: 10.1371/journal.pone.0009200 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C, Chen LL, Buchholz DE, Ahmado A, Semo M, Smart MJ, Hasan S, da Cruz L, Johnson LV, Clegg DO, Coffey PJ (2009) Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One 4(12), e8152. doi: 10.1371/journal.pone.0008152 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Stern JH, Temple S (2011) Stem cells for retinal replacement therapy. Neurother: J Am Soc Exp NeuroTher 8(4):736–743. doi: 10.1007/s13311-011-0077-6 CrossRefGoogle Scholar
  29. 29.
    Huang H, Gandhi JK, Zhong X, Wei Y, Gong J, Duh EJ, Vinores SA (2011) TNFalpha is required for late BRB breakdown in diabetic retinopathy, and its inhibition prevents leukostasis and protects vessels and neurons from apoptosis. Invest Ophthalmol Vis Sci 52(3):1336–1344. doi: 10.1167/iovs.10-5768 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Desouza CV, Hamel FG, Bidasee K, O’Connell K (2011) Role of inflammation and insulin resistance in endothelial progenitor cell dysfunction. Diabetes 60(4):1286–1294. doi: 10.2337/db10-0875 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Palenski TL, Sorenson CM, Sheibani N (2013) Inflammatory cytokine-specific alterations in retinal endothelial cell function. Microvasc Res 89:57–69. doi: 10.1016/j.mvr.2013.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Driessler F, Venstrom K, Sabat R, Asadullah K, Schottelius AJ (2004) Molecular mechanisms of interleukin-10-mediated inhibition of NF-kappaB activity: a role for p50. Clin Exp Immunol 135(1):64–73CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ying Wang
    • 1
    • 2
  • Lingling Fan
    • 1
    • 3
  • Xiangda Meng
    • 1
  • Feng Jiang
    • 1
  • Qingzhong Chen
    • 1
  • Zhuhong Zhang
    • 1
  • Hua Yan
    • 1
    Email author
  1. 1.Department of OphthalmologyTianjin Medical University General HospitalTianjinChina
  2. 2.Shenyang Aier Eye HospitalShenyangChina
  3. 3.Department of OphthalmologyThe First Hospital Affiliated of Anhui Medical UniversityHefeiChina

Personalised recommendations