Advertisement

Safety and efficacy of selective retina therapy (SRT) for the treatment of diabetic macular edema in Korean patients

  • Young Gun Park
  • Jae Ryun Kim
  • Seungbum Kang
  • Eric Seifert
  • Dirk Theisen-Kunde
  • Ralf Brinkmann
  • Young-Jung RohEmail author
Retinal Disorders

Abstract

Purpose

Selective retina therapy (SRT) stimulates retinal pigment epithelium (RPE) cell migration and proliferation into irradiated areas. The objective of this study was to evaluate the efficacy and safety of SRT in Korean patients with clinically significant diabetic macular edema (DME).

Methods

Prospective non-randomized interventional case series study. Twenty-three eyes of 21 patients with clinically significant DME were treated with SRT and followed for 6 months. Patients underwent an evaluation of best corrected visual acuity (BCVA) in Early Treatment Diabetic Retinopathy Study (ETDRS) letters. Microperimetry was employed to measure macular sensitivity within the central 10° field, and the central macular thickness (CMT) and maximum macular thickness (MMT) were measured.

Results

An improvement in BCVA of one to two ETDRS lines was observed in 41.2 % of patients and an improvement of greater than two lines in 29.4 %. Although there was no significant change in CMT (P > 0.05), MMT decreased from 465.8 ± 87.4 μm to 434.3 ± 83.9 μm (P = 0.006), and mean macular sensitivity increased from 20.8 ± 3.4dB to 22.5 ± 3.5dB (P = 0.02).

Conclusions

The gains in BCVA and improvement in macular sensitivity demonstrated that SRT may be used as an effective and safe treatment modality in Korean patients with clinically significant DME.

Keywords

Diabetic macular edema Dosimetry Microperimetry Selective retina therapy Retinal pigment epithelium 

Notes

Acknowledgments

No author has financial or proprietary interests in any material or method mentioned.

This study was supported by the South Korean government-affiliated Ministry of Trade, Industry and Energy (M000004912-00192937). The sponsor had no role in the design or conduct of this research.

References

  1. 1.
    Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet 376:124–136CrossRefPubMedGoogle Scholar
  2. 2.
    Moss SE, Klein R, Klein BE (1998) The 14-year incidence of visual loss in a diabetic population. Ophthalmology 105:998–1003CrossRefPubMedGoogle Scholar
  3. 3.
    Early Treatment Diabetic Retinopathy Study research group (1985) Photocoagulation for diabetic macular edema. Early treatment diabetic retinopathy study report number 1. Arch Ophthalmol 103:1796–1806CrossRefGoogle Scholar
  4. 4.
    Bloomgarden ZT (2007) Screening for and managing diabetic retinopathy: current approaches. Am J Health Syst Pharm 64:S8–14CrossRefPubMedGoogle Scholar
  5. 5.
    Schatz H, Madeira D, McDonald HR, Johnson RN (1991) Progressive enlargement of laser scars following grid laser photocoagulation for diffuse diabetic macular edema. Arch Ophthalmol 109:1549–1551CrossRefPubMedGoogle Scholar
  6. 6.
    Ryan GJ (2007) New pharmacologic approaches to treating diabetic retinopathy. Am J Health Syst Pharm 64:S15–21CrossRefPubMedGoogle Scholar
  7. 7.
    Brancato R, Pece A, Avanza P, Radrizzani E (1990) Photocoagulation scar expansion after laser therapy for choroidal neovascularization in degenerative myopia. Retina 10:239–243CrossRefPubMedGoogle Scholar
  8. 8.
    Flaxel C, Bradle J, Acott T, Samples JR (2007) Retinal pigment epithelium produces matrix metalloproteinases after laser treatment. Retina 27:629–634CrossRefPubMedGoogle Scholar
  9. 9.
    Sivaprasad S, Dorin G (2012) Subthreshold diode laser micropulse photocoagulation for the treatment of diabetic macular edema. Expert Rev Med Devices 9:189–197CrossRefPubMedGoogle Scholar
  10. 10.
    Vujosevic S, Bottega E, Casciano M, Pilotto E, Convento E, Midena E (2010) Microperimetry and fundus autofluorescence in diabetic macular edema: subthreshold micropulse diode laser versus modified early treatment diabetic retinopathy study laser photocoagulation. Retina 30:908–916CrossRefPubMedGoogle Scholar
  11. 11.
    Brinkmann R, Roider J, Birngruber R (2006) Selective retina therapy (SRT): a review on methods, techniques, preclinical and first clinical results. Bull Soc Belge Ophtalmol:51–69.Google Scholar
  12. 12.
    Neumann J, Brinkmann R (2006) Cell disintegration by laser-induced transient microbubbles and its simultaneous monitoring by interferometry. J Biomed Opt 11:041112CrossRefPubMedGoogle Scholar
  13. 13.
    Brinkmann R, Huttmann G, Rogener J, Roider J, Birngruber R, Lin CP (2000) Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen. Lasers Surg Med 27:451–464CrossRefPubMedGoogle Scholar
  14. 14.
    Klatt C, Saeger M, Oppermann T, Porksen E, Treumer F, Hillenkamp J, Fritzer E, Brinkmann R, Birngruber R, Roider J (2011) Selective retina therapy for acute central serous chorioretinopathy. Br J Ophthalmol 95:83–88CrossRefPubMedGoogle Scholar
  15. 15.
    Roider J, Liew SH, Klatt C, Elsner H, Poerksen E, Hillenkamp J, Brinkmann R, Birngruber R (2010) Selective retina therapy (SRT) for clinically significant diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 248:1263–1272CrossRefPubMedGoogle Scholar
  16. 16.
    Elsner H, Porksen E, Klatt C, Bunse A, Theisen-Kunde D, Brinkmann R, Birngruber R, Laqua H, Roider J (2006) Selective retina therapy in patients with central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 244:1638–1645CrossRefPubMedGoogle Scholar
  17. 17.
    Koinzer S, Elsner H, Klatt C, Porksen E, Brinkmann R, Birngruber R, Roider J (2008) Selective retina therapy (SRT) of chronic subfoveal fluid after surgery of rhegmatogenous retinal detachment: three case reports. Graefes Arch Clin Exp Ophthalmol 246:1373–1378CrossRefPubMedGoogle Scholar
  18. 18.
    Prahs P, Walter A, Regler R, Theisen-Kunde D, Birngruber R, Brinkmann R, Framme C (2010) Selective retina therapy (SRT) in patients with geographic atrophy due to age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 248:651–658CrossRefPubMedGoogle Scholar
  19. 19.
    Park YG, Seifert E, Roh YJ, Theisen-Kunde D, Kang S, Brinkmann R (2014) Tissue response of selective retina therapy by means of a feedback-controlled energy ramping mode. Clin Experiment Ophthalmol 42:846–855CrossRefPubMedGoogle Scholar
  20. 20.
    Kim HD, Han JW, Ohn YH, Brinkmann R, Park TK (2015) Functional evaluation using multifocal electroretinogram after selective retina therapy with a microsecond-pulsed laser. Invest Ophthalmol Vis Sci 56:122–131CrossRefGoogle Scholar
  21. 21.
    Early Treatment Diabetic Retinopathy Study Research Group (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs--an extension of the modified Airlie house classification. ETDRS report number 10. Ophthalmology 98:786–806CrossRefGoogle Scholar
  22. 22.
    Pelosini L, Hull CC, Boyce JF, McHugh D, Stanford MR, Marshall J (2011) Optical coherence tomography may be used to predict visual acuity in patients with macular edema. Invest Ophthalmol Vis Sci 52:2741–2748CrossRefPubMedGoogle Scholar
  23. 23.
    Framme C, Schuele G, Roider J, Birngruber R, Brinkmann R (2004) Influence of pulse duration and pulse number in selective RPE laser treatment. Lasers Surg Med 34:206–215CrossRefPubMedGoogle Scholar
  24. 24.
    Menke MN, Sato E, Van De Velde FJ, Feke GT (2006) Combined use of SLO microperimetry and OCT for retinal functional and structural testing. Graefes Arch Clin Exp Ophthalmol 244:634–638CrossRefPubMedGoogle Scholar
  25. 25.
    Kallmark FP, Ygge J (2008) Fixation pattern in healthy subjects during microperimetry with the scanning laser ophthalmoscope. Med Sci Monit 14:CR311–315PubMedGoogle Scholar
  26. 26.
    Hudson C, Flanagan JG, Turner GS, Chen HC, Young LB, McLeod D (1998) Influence of laser photocoagulation for clinically significant diabetic macular oedema (DMO) on short-wavelength and conventional automated perimetry. Diabetologia 41:1283–1292CrossRefPubMedGoogle Scholar
  27. 27.
    Striph GG, Hart WM Jr, Olk RJ (1988) Modified grid laser photocoagulation for diabetic macular edema. Effect Central Vis Field Ophthalmol 95:1673–1679Google Scholar
  28. 28.
    Muqit MM, Gray JC, Marcellino GR, Henson DB, Young LB, Charles SJ, Turner GS, Stanga PE (2009) Fundus autofluorescence and fourier-domain optical coherence tomography imaging of 10 and 20 millisecond pascal retinal photocoagulation treatment. Br J Ophthalmol 93:518–525CrossRefPubMedGoogle Scholar
  29. 29.
    Framme C, Brinkmann R, Birngruber R, Roider J (2002) Autofluorescence imaging after selective RPE laser treatment in macular diseases and clinical outcome: a pilot study. Br J Ophthalmol 86:1099–1106CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Luttrull JK, Dorin G (2012) Subthreshold diode micropulse laser photocoagulation (SDM) as invisible retinal phototherapy for diabetic macular edema: a review. Curr Diabetes Rev 8:274–284CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pelosini L, Hamilton R, Mohamed M, Hamilton AM, Marshall J (2013) Retina rejuvenation therapy for diabetic macular edema: a pilot study. Retina 33:548–558CrossRefPubMedGoogle Scholar
  32. 32.
    Luttrull JK, Sramek C, Palanker D, Spink CJ, Musch DC (2012) Long-term safety, high-resolution imaging, and tissue temperature modeling of subvisible diode micropulse photocoagulation for retinovascular macular edema. Retina 32:375–386CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Young Gun Park
    • 1
  • Jae Ryun Kim
    • 1
  • Seungbum Kang
    • 1
  • Eric Seifert
    • 2
  • Dirk Theisen-Kunde
    • 2
  • Ralf Brinkmann
    • 2
  • Young-Jung Roh
    • 1
    • 3
    Email author
  1. 1.Department of Ophthalmology and Visual ScienceCatholic University of KoreaSeoulRepublic of Korea
  2. 2.Medical Laser Center Lübeck GmbHLübeckGermany
  3. 3.Department of Ophthalmology, Yeouido St. Mary’s Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea

Personalised recommendations