Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study

  • Xiaolei Wang
  • Chunhui Jiang
  • Tony Ko
  • Xiangmei Kong
  • Xiaobo Yu
  • Wang Min
  • Guohua Shi
  • Xinghuai Sun



To explore how optic disc perfusion varies in patients with open-angle glaucoma (OAG) and how this correlates with glaucoma severity.


We performed a prospective and cross-sectional observational study that included 62 eyes from 62 patients with OAG, divided into three groups according to their visual field (VF) results, and 20 eyes from 20 normal control subjects. Optic disc perfusion was studied using optical coherence tomography angiography (angio-OCT), and flow index and vessel density were determined. The VF, mean deviation (MD), pattern standard deviation (PSD), retinal nerve fiber layer (RNFL) thickness, and ganglion cell complex (GCC) thickness were also recorded. The potential associations between disc perfusion and VF defects or structural loss were analyzed.


In OAG patients, the disc flow index and vessel density were significantly lower than in normal controls (all p<0.001) and were correlated with the severity of glaucoma. In OAG eyes, the flow index and vessel density were significantly correlated with MD, RNFL, and GCC thickness (all p<0.01), but were not in the normal controls. The receiver operating characteristic (ROC) curve analysis also revealed that disc flow index and vessel density had the power to differentiate normal eyes from eyes with OAG (under the ROC curves: 0.82 and 0.80, respectively).


Angiograms demonstrated a reduced disc flow index and vessel density in glaucoma, and this reduction was closely related to GCC thickness. This indicated that measurement of disc perfusion by angio-OCT might be important for the monitoring of glaucoma.


Open-angle glaucoma Optic disc perfusion Optical coherence tomography angiography 


Funding statement

Project supported by the National Major Scientific Equipment program (Grant No. 2012YQ12008003, China), by the Special Scientific Research Project of Health Professions (Grant No. 201302015, China)

Conflict of interest

Tony Ko is an employee of Optovue, Inc.


  1. 1.
    Resnikoff S, Pascolini D, Etya’ale D et al (2004) Global data on visual impairment in the year 2002. Bull World Health Organ 82:844–851PubMedCentralPubMedGoogle Scholar
  2. 2.
    Caprioli J (2007) Intraocular pressure fluctuation: an independent risk factor for glaucoma? Arch Ophthalmol 125:1124–1125CrossRefPubMedGoogle Scholar
  3. 3.
    Caprioli J, Coleman AL (2008) Intraocular pressure fluctuation a risk factor for visual field progression at low intraocular pressures in the Advanced Glaucoma Intervention Study. Ophthalmology 115:1123–1129CrossRefPubMedGoogle Scholar
  4. 4.
    Pan Y, Varma R (2011) Natural history of glaucoma. Indian J Ophthalmol 59:S19–S23PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Heijl A, Leske MC, Bengtsson B, Hyman L, Hussein M (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120:1268–1279CrossRefPubMedGoogle Scholar
  6. 6.
    Musch DC, Gillespie BW, Lichter PR, Niziol LM, Janz NK (2009) Visual field progression in the Collaborative Initial Glaucoma Treatment Study: the impact of treatment and other baseline factors. Ophthalmology 116:200–207PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Collaborative Normal-Tension Glaucoma Study Group (1998) The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol 126(4):498–505CrossRefGoogle Scholar
  8. 8.
    Flammer J, Orgul S, Costa VP et al (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21:359–393CrossRefPubMedGoogle Scholar
  9. 9.
    Schmidl D, Garhofer G, Schmetterer L (2011) The complex interaction between ocular perfusion pressure and ocular blood flow - relevance for glaucoma. Exp Eye Res 93:141–155CrossRefPubMedGoogle Scholar
  10. 10.
    Emre M, Orgul S, Gugleta K, Flammer J (2004) Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation. Brit J Ophthalmol 88:662–666CrossRefGoogle Scholar
  11. 11.
    Leske MC (2007) Open-angle glaucoma: an epidemiologic overview. Ophthalmic Epidemiol 14:166–172CrossRefPubMedGoogle Scholar
  12. 12.
    Bonomi L, Marchini G, Marraffa M et al (2000) Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology 107:1287–1293CrossRefPubMedGoogle Scholar
  13. 13.
    Rojanapongpun P, Drance SM, Morrison BJ (1993) Ophthalmic artery flow velocity in glaucomatous and normal subjects. Br J Ophthalmol 77:25–29PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Chung HS, Harris A, Kagemann L, Martin B (1999) Peripapillary retinal blood flow in normal tension glaucoma. Br J Ophthalmol 83:466–469PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Yin ZQ, Vaegan, Millar TJ, Beaumont P, Sarks S (1997) Widespread choroidal insufficiency in primary open-angle glaucoma. J Glaucoma 6:23–32CrossRefPubMedGoogle Scholar
  16. 16.
    Januleviciene I, Sliesoraityte I, Siesky B, Harris A (2008) Diagnostic compatibility of structural and haemodynamic parameters in open-angle glaucoma patients. Acta Ophthalmol 86:552–557CrossRefPubMedGoogle Scholar
  17. 17.
    Puliafito CA, Hee MR, Lin CP et al (1995) Imaging of macular diseases with optical coherence tomography. Ophthalmology 102:217–229CrossRefPubMedGoogle Scholar
  18. 18.
    Hee MR, Puliafito CA, Wong C et al (1995) Optical coherence tomography of macular holes. Ophthalmology 102:748–756CrossRefPubMedGoogle Scholar
  19. 19.
    Hee MR, Baumal CR, Puliafito CA et al (1996) Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology 103:1260–1270CrossRefPubMedGoogle Scholar
  20. 20.
    Schuman JS, Hee MR, Puliafito CA et al (1995) Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 113:586–596CrossRefPubMedGoogle Scholar
  21. 21.
    Schuman JS, Hee MR, Arya AV et al (1995) Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol 6:89–95CrossRefPubMedGoogle Scholar
  22. 22.
    Jia Y, Morrison JC, Tokayer J et al (2012) Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express 3:3127–3137PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Jia Y, Tan O, Tokayer J et al (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20(4):4710–4725PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Wang X, Jia Y, Spain R et al (2014) Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthalmol 98:1368–1373CrossRefPubMedGoogle Scholar
  25. 25.
    Jia Y, Wei E, Wang X et al (2014) Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 121(7):1322–1332PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Wei E, Jia Y, Tan O, Potsaid B, Liu JJ et al (2013) Parafoveal retinal vascular response to pattern visual stimulation assessed with OCT angiography. PLoS One 8(12):e81343PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Kaeser P, Orgul S, Zawinka C, Reinhard G, Flammer J (2005) Influence of change in body position on choroidal blood flow in normal subjects. Br J Ophthalmol 89:1302–1305PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Longo A, Geiser MH, Riva CE (2004) Posture changes and subfoveal choroidal blood flow. Invest Ophthalmol Vis Sci 45:546–551CrossRefPubMedGoogle Scholar
  29. 29.
    Sayegh FN, Weigelin E (1983) Functional ophthalmodynamometry. Comparison between brachial and ophthalmic blood pressure in sitting and supine position. Angiology 34:176–182CrossRefPubMedGoogle Scholar
  30. 30.
    Riva CE, Grunwald JE, Petrig BL (1986) Autoregulation of human retinal blood flow. An investigation with laser Doppler velocimetry. Invest Ophth Vis Sci 27:1706–1712Google Scholar
  31. 31.
    Talusan E, Schwartz B (1977) Specificity of fluorescein angiographic defects of the optic disc in glaucoma. Arch Ophthalmol 95:2166–2175CrossRefPubMedGoogle Scholar
  32. 32.
    Schwartz B, Rieser JC, Fishbein SL (1977) Fluorescein angiographic defects of the optic disc in glaucoma. Arch Ophthalmol 95:1961–1974CrossRefPubMedGoogle Scholar
  33. 33.
    Piltz-Seymour JR, Grunwald JE, Hariprasad SM, Dupont J (2001) Optic nerve blood flow is diminished in eyes of primary open angle glaucoma suspects. Am J Ophthalmol 132:63–69CrossRefPubMedGoogle Scholar
  34. 34.
    Hamard P, Hamard H, Dufaux J, Quesnot S (1994) Optic nerve head blood flow using a laser Doppler velocimeter and haemorheology in primary open angle glaucoma and normal pressure glaucoma. Br J Ophthalmol 78:449–453PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Michelson G, Langhans MJ, Groh MJ (1996) Perfusion of the juxtapapillary retina and the neuroretinal rim area in primary open angle glaucoma. J Glaucoma 5:91–98PubMedGoogle Scholar
  36. 36.
    Yokoyama Y, Aizawa N, Chiba N et al (2011) Significant correlations between optic nerve head microcirculation and visual field defects and nerve fiber layer loss in glaucoma patients with myopic glaucomatous disk. Clin Ophthalmol 5:1721–1727PubMedCentralPubMedGoogle Scholar
  37. 37.
    Karczewicz D, Modrzejewska M (2004) Assessment of blood flow in eye arteries in patients with myopia and glaucoma. Klin Oczna 106(1–2 Suppl):214–216PubMedGoogle Scholar
  38. 38.
    Melo GB, Libera RD, Barbosa AS, Pereira LM, Doi LM, Melo LJ (2006) Comparison of optic disk and retinal nerve fiber layer thickness in nonglaucomatous and glaucomatous patients with high myopia. Am J Ophthalmol 142:858–860CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat HospitalShanghai Medical College of Fudan UniversityShanghaiChina
  2. 2.Key Laboratory of Myopia, Ministry of Health (Fudan University)ShanghaiChina
  3. 3.Optovue, IncFremontUSA
  4. 4.Key Laboratory on Adaptive Optics, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina
  5. 5.State Key Laboratory of Medical Neurobiology, Institutes of Brain ScienceFudan UniversityShanghaiChina
  6. 6.Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University)ShanghaiChina

Personalised recommendations